Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Impot Res ; 24(6): 211-6, 2012.
Article in English | MEDLINE | ID: mdl-22717765

ABSTRACT

Calcium-activated chloride channels (CaCCs) are one of five families of chloride channels, ubiquitously expressed, and essential for a host of biological actions. CaCCs have key roles in processes as diverse as olfactory transduction and epithelial secretion, and also CaCCs are essential in smooth muscle contraction. The corpus cavernosum is a vascular smooth muscle that must relax to facilitate erections. Parasympathetic activation produces relaxation of the corpus cavernosum through a nitric oxide-dependent pathway, and sympathetic stimulation in both preventing and terminating erections by contracting the corpus cavernosum. Both these pathways affect activity of CaCCs. The past 5 years produced many successes in CaCC research. One key area of success was the identification of the elusive 'molecular candidate' of CaCCs, as the TMEM16A protein (dubbed anoctamin-1) and potentially other members of the anoctamin family of transmembrane proteins. However, enthusiasm has been somewhat tempered because of evidence that this family of proteins may not be responsible for calcium-activated chloride currents in certain epithelial tissues. Several studies identified specific inhibitors of CaCCs as well as specific inhibitors for anoctamin-1. Despite the number of recent achievements in this field there are many details that still need to be elucidated. Of particular value would be more details on the identity of the CaCCs in corpus cavernosum smooth muscle, using new inhibitors to gain insight into the signalling pathway, and the evaluation of whether inhibition of CaCCs provides any specific benefit in different models of ED.


Subject(s)
Chloride Channels/metabolism , Muscle Contraction/physiology , Penile Erection/physiology , Penis/metabolism , Calcium/metabolism , Humans , Male , Muscle, Smooth, Vascular/metabolism
2.
Chemistry ; 7(17): 3696-704, 2001 Sep 03.
Article in English | MEDLINE | ID: mdl-11575770

ABSTRACT

The sequential reaction of ZnMe2 with a 2-pyridylamine (HN(2-C5H4N)R, R = Ph: 1; 3,5-Xy (=3,5-xylyl): 2; 2,6-Xy: 3; Bz (=benzyl): 4; Me: 5), tBuLi and thereafter with oxygen affords various lithium zincate species, the solid-state structures of which reveal a diversity of oxo-capture modes. Amine 1 reacts to give both dimeric THF [Li(Me)OZn[N(2-C5H4N)Ph]2] (6), wherein oxygen has inserted into the Zn-C bond of a [MeZn[N(2-C5H4N)-Ph]2] ion, and the trigonal Li2Zn complex, bis(OtBu)-capped (THF x Li)2-[[(mu3-O)tBu]2Zn[N(2-C5H4N)Ph]2] (7). The structural analogue of 6 (8) results from the employment of 2, while the use of more sterically congested 3 yields a pseudo-cubane dimer [(THF x [Li(tBu)OZn(OtBu)Me]]2] (9) notable for the retention of labile Zn-C(Me). Amines 4 and 5 afford the oxo-encapsulation products [mu4-O)Zn4[(2-C5H4N)-NBz]6] (10b), and [tBu(mu3-O)-Li3(mu6-O)Zn3[(2-C5H4N)NMe]6] (11), respectively, with concomitant oxo-insertion into a Li-C interaction resulting in capping of the fac-isomeric (mu6-O)M3M'3 distorted octahedral core of the latter complex by a tert-butoxide group.

SELECTION OF CITATIONS
SEARCH DETAIL
...