Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38313260

ABSTRACT

RNA sequencing offers unique insights into transcriptome diversity, and a plethora of tools have been developed to analyze alternative splicing. One important task is to detect changes in the relative transcript abundance in differential transcript usage (DTU) analysis. The choice of the right analysis tool is non-trivial and depends on experimental factors such as the availability of single- or paired-end and bulk or single-cell data. To help users select the most promising tool for their task, we performed a comprehensive benchmark of DTU detection tools. We cover a wide array of experimental settings, using simulated bulk and single-cell RNA-seq data as well as real transcriptomics datasets, including time-series data. Our results suggest that DEXSeq, edgeR, and LimmaDS are better choices for paired-end data, while DSGseq and DEXSeq can be used for single-end data. In single-cell simulation settings, we showed that satuRn performs better than DTUrtle. In addition, we showed that Spycone is optimal for time series DTU/IS analysis based on the evidence provided using GO terms enrichment analysis.

2.
NAR Genom Bioinform ; 5(2): lqad044, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37260511

ABSTRACT

Alternative splicing is a major contributor to transcriptome and proteome diversity in health and disease. A plethora of tools have been developed for studying alternative splicing in RNA-seq data. Previous benchmarks focused on isoform quantification and mapping. They neglected event detection tools, which arguably provide the most detailed insights into the alternative splicing process. DICAST offers a modular and extensible framework for analysing alternative splicing integrating eleven splice-aware mapping and eight event detection tools. We benchmark all tools extensively on simulated as well as whole blood RNA-seq data. STAR and HISAT2 demonstrated the best balance between performance and run time. The performance of event detection tools varies widely with no tool outperforming all others. DICAST allows researchers to employ a consensus approach to consider the most successful tools jointly for robust event detection. Furthermore, we propose the first reporting standard to unify existing formats and to guide future tool development.

3.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36579860

ABSTRACT

MOTIVATION: During disease progression or organism development, alternative splicing may lead to isoform switches that demonstrate similar temporal patterns and reflect the alternative splicing co-regulation of such genes. Tools for dynamic process analysis usually neglect alternative splicing. RESULTS: Here, we propose Spycone, a splicing-aware framework for time course data analysis. Spycone exploits a novel IS detection algorithm and offers downstream analysis such as network and gene set enrichment. We demonstrate the performance of Spycone using simulated and real-world data of SARS-CoV-2 infection. AVAILABILITY AND IMPLEMENTATION: The Spycone package is available as a PyPI package. The source code of Spycone is available under the GPLv3 license at https://github.com/yollct/spycone and the documentation at https://spycone.readthedocs.io/en/latest/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Alternative Splicing , COVID-19 , Humans , SARS-CoV-2/genetics , Software , Algorithms
4.
J Alzheimers Dis ; 87(4): 1671-1681, 2022.
Article in English | MEDLINE | ID: mdl-35527555

ABSTRACT

BACKGROUND: The Tg4-42 mouse model for sporadic Alzheimer's disease (AD) has unique features, as the neuronal expression of wild type N-truncated Aß4-42 induces an AD-typical neurological phenotype in the absence of plaques. It is one of the few models developing neuron death in the CA1 region of the hippocampus. As such, it could serve as a powerful tool for preclinical drug testing and identification of the underlying molecular pathways that drive the pathology of AD. OBJECTIVE: The aim of this study was to use a differential co-expression analysis approach for analyzing a small RNA sequencing dataset from a well-established murine model in order to identify potentially new players in the etiology of AD. METHODS: To investigate small nucleolar RNAs in the hippocampus of Tg4-42 mice, we used RNA-Seq data from this particular tissue and, instead of analyzing the data at single gene level, employed differential co-expression analysis, which takes the comparison to gene pair level and thus affords a new angle to the interpretation of these data. RESULTS: We identified two clusters of differentially correlated small RNAs, including Snord55, Snord57, Snord49a, Snord12, Snord38a, Snord99, Snord87, Mir1981, Mir106b, Mir30d, Mir598, and Mir99b. Interestingly, some of them have been reported to be functionally relevant in AD pathogenesis, as AD biomarkers, regulating tau phosphorylation, TGF-ß receptor function or Aß metabolism. CONCLUSION: The majority of snoRNAs for which our results suggest a potential role in the etiology of AD were so far not conspicuously implicated in the context of AD pathogenesis and could thus point towards interesting new avenues of research in this field.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , RNA, Small Nucleolar/genetics , Sequence Analysis, RNA
5.
Genome Biol ; 22(1): 327, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857024

ABSTRACT

Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.


Subject(s)
Alternative Splicing , RNA Splicing , Biomarkers , Cardiomyopathies , Cardiomyopathy, Dilated/genetics , Humans , Multiple Sclerosis/genetics , Platelet Activation/genetics , Protein Interaction Maps/genetics , Systems Biology
6.
Front Immunol ; 11: 1930, 2020.
Article in English | MEDLINE | ID: mdl-33133058

ABSTRACT

Dry eye disease (DED) can be represented as a display of disease in the mucosal part of the eye. It is quite distinct from the retinal side of the eye which connects with the neurons and thus represents the neuroimmunological disease. DED can occur either by the internal damage of the T cells inside the body or by microbial infections. Here we summarize the most common animal model systems used for DED relating to immune factors. We aimed to identify the most important immune cell/cytokine among the animal models of the disease. We also show the essential immune factors which are being tested for DED treatment. In our results, both the mechanism and the treatment of its animal models indicate the involvement of Th1 cells and the pro-inflammatory cytokine (IL-1ß and TNF-α) related to the Th1-cells. The study is intended to increase the knowledge of the animal models in the field of the ocular surface along with the opening of a dimension of thoughts while designing a new animal model or treatment paradigm for ocular surface inflammatory disorders.


Subject(s)
Dry Eye Syndromes/immunology , Eye/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Disease Models, Animal , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Dry Eye Syndromes/metabolism , Eye/drug effects , Eye/metabolism , Humans , Inflammation Mediators/metabolism , Mice , Rats , Signal Transduction , Th1 Cells/drug effects , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/metabolism
7.
J Clin Med ; 8(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810226

ABSTRACT

Ocular surface inflammatory disorder (OSID) is a spectrum of disorders that have features of several etiologies whilst displaying similar phenotypic signs of ocular inflammation. They are complicated disorders with underlying mechanisms related to several autoimmune disorders, such as rheumatoid arthritis (RA), Sjögren's syndrome, and systemic lupus erythematosus (SLE). Current literature shows the involvement of both innate and adaptive arms of the immune system in ocular surface inflammation. The ocular surface contains distinct components of the immune system in the conjunctiva and the cornea. The normal conjunctiva epithelium and sub-epithelial stroma contains resident immune cells, such as T cells, B cells (adaptive), dendritic cells, and macrophages (innate). The relative sterile environment of the cornea is achieved by the tolerogenic properties of dendritic cells in the conjunctiva, the presence of regulatory lymphocytes, and the existence of soluble immunosuppressive factors, such as the transforming growth factor (TGF)-ß and macrophage migration inhibitory factors. With the presence of both innate and adaptive immune system components, it is intriguing to investigate the most important leukocyte population in the ocular surface, which is involved in immune surveillance. Our meta-analysis investigates into this with a focus on both infectious (contact lens wear, corneal graft rejection, Cytomegalovirus, keratitis, scleritis, ocular surgery) and non-infectious (dry eye disease, glaucoma, graft-vs-host disease, Sjögren's syndrome) situations. We have found the predominance of dendritic cells in ocular surface diseases, along with the Th-related cytokines. Our goal is to improve the knowledge of immune cells in OSID and to open new dimensions in the field. The purpose of this study is not to limit ourselves in the ocular system, but to investigate the importance of dendritic cells in the disorders of other mucosal organs (e.g., lungs, gut, uterus). Holistically, we want to investigate if this is a common trend in the initiation of any disease related to the mucosal organs and find a unified therapeutic approach. In addition, we want to show the power of computational approaches to foster a collaboration between computational and biological science.

SELECTION OF CITATIONS
SEARCH DETAIL
...