Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(24): 8285-8301, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32332100

ABSTRACT

Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the ß-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.


Subject(s)
Interleukin-11 Receptor alpha Subunit/chemistry , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/metabolism , Area Under Curve , Cell Line, Tumor , Entropy , Humans , Interleukin-11 Receptor alpha Subunit/genetics , Models, Molecular , Mutation/genetics , Protein Binding , Protein Domains , Structure-Activity Relationship , Thermodynamics
2.
J Neurochem ; 147(3): 409-428, 2018 11.
Article in English | MEDLINE | ID: mdl-30091236

ABSTRACT

The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities. As such, LRRK2 GTPase domain was predicted to be a GAD. Herein, we describe the design and high-level expression of human LRRK2 Roc-COR domain (LRRK2 Roc-COR). Biochemical analyses of LRRK2 Roc-COR reveal that it forms homodimers, with the C-terminal portion of COR mediating its dimerization. Furthermore, it co-purifies and binds Mg2+ GTP/GDP at 1 : 1 stoichiometry, and it hydrolyzes GTP with Km  and kcat  of 22 nM and 4.70 × 10-4  min-1 ,  respectively. Thus, even though LRRK2 Roc-COR forms GAD-like homodimers, it exhibits conventional Ras-like GTPase properties, with high-affinity binding of Mg2+ -GTP/GDP and low intrinsic catalytic activity. The PD-causative Y1699C mutation mapped to the COR domain was previously reported to reduce the GTPase activity of full-length LRRK2. In contrast, this mutation induces no change in the GTPase activity, and only slight perturbations in the secondary structure contents of LRRK2 Roc-COR. As this mutation does not directly affect the GTPase activity of the isolated Roc-COR tandem, it is possible that the effects of this mutation on full-length LRRK2 occur via other functional domains. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Subject(s)
GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Genes, ras/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Animals , Dimerization , Escherichia coli , Gene Expression Regulation, Enzymologic/genetics , Guanine Nucleotides/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Magnesium/metabolism , Mice , Mutation/genetics , Neuropeptides/biosynthesis , Neuropeptides/genetics , Protein Multimerization , Protein Structure, Secondary/genetics , Recombinant Proteins , rac1 GTP-Binding Protein/biosynthesis , rac1 GTP-Binding Protein/genetics
3.
Cell Commun Signal ; 15(1): 29, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28784162

ABSTRACT

BACKGROUND: C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. METHODS: We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. RESULTS: Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. CONCLUSIONS: SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells.


Subject(s)
Proto-Oncogene Proteins pp60(c-src)/metabolism , Binding Sites , Cell Line, Tumor , HEK293 Cells , Humans , Mutation , Phosphorylation , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Proto-Oncogene Proteins pp60(c-src)/chemistry , Proto-Oncogene Proteins pp60(c-src)/genetics , Tyrosine/chemistry
4.
Arch Biochem Biophys ; 587: 48-60, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26471078

ABSTRACT

Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates.


Subject(s)
PTEN Phosphohydrolase/metabolism , Phosphatidylinositol Phosphates/metabolism , Animals , Binding Sites , Cell Line , Enzyme Activation , Kinetics , Mutation , PTEN Phosphohydrolase/chemistry , PTEN Phosphohydrolase/genetics , Phosphatidylinositol Phosphates/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Biochim Biophys Acta ; 1844(3): 487-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24334106

ABSTRACT

The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr(530) in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe(3+) ions with affinities at pH4.0 of 33 and 252µM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23µM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe(3+) ions with much higher affinities (1.2pM and 160nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe(3+) ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe(3+) ions. These results suggest that Fe(3+) ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.


Subject(s)
Ferric Compounds/metabolism , src-Family Kinases/metabolism , Amino Acid Sequence , Cations , Enzyme Activation , Molecular Sequence Data , Phosphorylation , Protein Binding , Surface Plasmon Resonance , src-Family Kinases/chemistry
6.
Protein Expr Purif ; 74(2): 139-47, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20667476

ABSTRACT

Csk-homologous kinase (CHK) is an important endogenous inhibitor constraining the oncogenic actions of Src-family kinases (SFKs) in cells. It suppresses SFK activity by specifically phosphorylating the conserved regulatory tyrosine near the C-terminus of SFKs. In addition to phosphorylation, CHK employs a novel non-catalytic inhibitory mechanism to suppress SFK activity. This mechanism involves direct binding of CHK to the active forms of SFKs to form stable protein complexes. Since aberrant activation of SFKs contributes to cancer formation and progression, small-molecule inhibitors mimicking the non-catalytic inhibitory mechanism of CHK are potential anti-cancer therapeutics. Elucidation of the catalytic and regulatory properties and the structural basis of the CHK non-catalytic inhibitory mechanism would facilitate the development of these small-molecule inhibitors. To this end, we developed procedures for higher level expression in insect cells of active recombinant CHK with a hexa-histidine tag attached to its C-terminus (referred to as CHK-His(6)) and its rapid purification by a two-step method. Analyses by size-exclusion column chromatography and analytical ultracentrifugation revealed that the purified CHK-His(6) exists as a monomeric species in solution. Biochemical analyses demonstrated that CHK-His(6) exhibits efficiencies comparable to those of CSK in phosphorylating artificial protein and peptide substrates as well as an intact SFK protein. Our results indicate that the recombinant CHK-His(6) can be used for future studies to decipher the three-dimensional structure, and regulatory and catalytic properties of CHK.


Subject(s)
Nerve Tissue Proteins/isolation & purification , Nerve Tissue Proteins/metabolism , Protein-Tyrosine Kinases/isolation & purification , Protein-Tyrosine Kinases/metabolism , Animals , CSK Tyrosine-Protein Kinase , Cell Line , Chromatography, Ion Exchange , Insecta/cytology , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Phosphorylation , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , src-Family Kinases
7.
Hum Mol Genet ; 15(21): 3251-62, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17000703

ABSTRACT

The Parkinson's disease (PD) causative PINK1 gene encodes a mitochondrial protein kinase called PTEN-induced kinase 1 (PINK1). The autosomal recessive pattern of inheritance of PINK1 mutations suggests that PINK1 is neuroprotective and therefore loss of PINK1 function causes PD. Indeed, overexpression of PINK1 protects neuroblastoma cells from undergoing neurotoxin-induced apoptosis. As a protein kinase, PINK1 presumably exerts its neuroprotective effect by phosphorylating specific mitochondrial proteins and in turn modulating their functions. Towards elucidation of the neuroprotective mechanism of PINK1, we employed the baculovirus-infected insect cell system to express the recombinant protein consisting of the PINK1 kinase domain either alone [PINK1(KD)] or with the PINK1 C-terminal tail [PINK1(KD+T)]. Both recombinant enzymes preferentially phosphorylate the artificial substrate histone H1 exclusively at serine and threonine residues, demonstrating that PINK1 is indeed a protein serine/threonine kinase. Introduction of the PD-associated mutations, G386A and G409V significantly reduces PINK1(KD) kinase activity. Since Gly-386 and Gly-409 reside in the conserved activation segment of the kinase domain, the results suggest that the activation segment is a regulatory switch governing PINK1 kinase activity. We also demonstrate that PINK1(KD+T) is approximately 6-fold more active than PINK1(KD). Thus, in addition to the activation segment, the C-terminal tail also contains regulatory motifs capable of governing PINK1 kinase activity. Finally, the availability of active recombinant PINK1 proteins permits future studies to search for mitochondrial proteins that are preferentially phosphorylated by PINK1. As these proteins are likely physiological substrates of PINK1, their identification will shed light on the mechanism of pathogenesis of PD.


Subject(s)
Down-Regulation , Gene Deletion , Parkinson Disease/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Amino Acid Sequence , Animals , Baculoviridae/genetics , Caseins/genetics , Caseins/metabolism , Cattle , Histones/metabolism , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Spodoptera/cytology , Spodoptera/genetics
8.
J Biol Chem ; 279(20): 20752-66, 2004 May 14.
Article in English | MEDLINE | ID: mdl-14985335

ABSTRACT

Although C-terminal Src kinase (CSK)-homologous kinase (CHK) is generally believed to inactivate Src-family tyrosine kinases (SFKs) by phosphorylating their consensus C-terminal regulatory tyrosine (Tyr(T)), exactly how CHK inactivates SFKs is not fully understood. Herein, we report that in addition to phosphorylating Tyr(T), CHK can inhibit SFKs by a novel non-catalytic mechanism. First, CHK directly binds to the SFK members Hck, Lyn, and Src to form stable protein complexes. The complex formation is mediated by a non-catalytic Tyr(T)-independent mechanism because it occurs even in the absence of ATP or when Tyr(T) of Hck is replaced by phenylalanine. Second, the non-catalytic CHK-SFK interaction alone is sufficient to inactivate SFKs by inhibiting the catalytic activity of autophosphorylated SFKs. Third, CHK and Src co-localize to specific plasma membrane microdomains of rat brain cells, suggesting that CHK is in close proximity to Src such that it can effectively inactivate Src in vivo. Fourth, native CHK.Src complex exists in rat brain, and recombinant CHK.Hck complex exists in transfected HEK293T cells, implying that CHK forms stable complexes with SFKs in vivo. Taken together, our findings suggest that CHK inactivates SFKs (i) by phosphorylating their Tyr(T) and (ii) by this novel Tyr(T)-independent mechanism involving direct binding of CHK to SFKs. It has been documented that autophosphorylated SFKs can still be active, in some cases even when their Tyr(T) is phosphorylated. Thus, the ability of the Tyr(T)-independent mechanism to suppress the activity of both non-phosphorylated and autophosphorylated SFKs represents a fail-safe measure employed by CHK to down-regulate SFK signaling under all circumstances.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Nerve Tissue Proteins , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins pp60(c-src)/chemistry , Proto-Oncogene Proteins pp60(c-src)/metabolism , src-Family Kinases/antagonists & inhibitors , Animals , Base Sequence , Cell Line , DNA Primers , Kinetics , Parathyroid Hormone , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphorylation , Polymerase Chain Reaction/methods , Protein Binding , Restriction Mapping , Spodoptera , Substrate Specificity , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...