Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 189(17): 6324-32, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17616594

ABSTRACT

AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding. Chromatin immunoprecipitation experiments confirmed the acetoacetate-inducible binding of AtoC to the predicted DNA region in vivo. DNase I protection footprinting analysis revealed that AtoC binds two 20-bp stretches, constituting an inverted palindrome, that are located at -146 to -107 relative to the transcription initiation site. Analyses of promoter mutants obtained by in vitro chemical mutagenesis of the atoDAEB promoter verified both the importance of AtoC binding for the inducibility of the promoter by acetoacetate and the sigma54 dependence of atoDAEB expression. The integration host factor was also identified as a critical component of the AtoC-mediated induction of atoDAEB.


Subject(s)
DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Regulatory Elements, Transcriptional , Acetoacetates/metabolism , Chromatin Immunoprecipitation , DNA Footprinting , DNA Mutational Analysis , Fatty Acids, Volatile/metabolism , Metabolic Networks and Pathways/genetics , Mutagenesis , Mutation , Operon , Promoter Regions, Genetic , Protein Binding
2.
BMC Biochem ; 8: 1, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17224065

ABSTRACT

BACKGROUND: In bacteria, the biosynthesis of polyamines is modulated at the level of transcription as well as post-translationally. Antizyme (Az) has long been identified as a non-competitive protein inhibitor of polyamine biosynthesis in E. coli. Az was also revealed to be the product of the atoC gene. AtoC is the response regulator of the AtoS-AtoC two-component system and it functions as the positive transcriptional regulator of the atoDAEB operon genes, encoding enzymes involved in short chain fatty acid metabolism. The antizyme is referred to as AtoC/Az, to indicate its dual function as both a transcriptional and post-translational regulator. RESULTS: The roles of polyamines on the transcription of atoS and atoC genes as well as that of atoDAEB(ato) operon were studied. Polyamine-mediated induction was tested both in atoSC positive and negative E. coli backgrounds by using beta-galactosidase reporter constructs carrying the appropriate promoters patoDAEB, patoS, patoC. In addition, a selection of synthetic polyamine analogues have been synthesized and tested for their effectiveness in inducing the expression of atoC/Az, the product of which plays a pivotal role in the feedback inhibition of putrescine biosynthesis and the transcriptional regulation of the ato operon. The effects of these compounds were also determined on the ato operon expression. The polyamine analogues were also tested for their effect on the activity of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis and on the growth of polyamine-deficient E. coli. CONCLUSION: Polyamines, which have been reported to induce the protein levels of AtoC/Az in E. coli, act at the transcriptional level, since they cause activation of the atoC transcription. In addition, a series of polyamine analogues were studied on the transcription of atoC gene and ODC activity.


Subject(s)
Biogenic Polyamines/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Genes, Regulator , Biogenic Polyamines/biosynthesis , DNA-Binding Proteins/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Operon , Ornithine Decarboxylase/metabolism , Protein Processing, Post-Translational , Transcription, Genetic
3.
Biochim Biophys Acta ; 1725(3): 257-68, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16153782

ABSTRACT

Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected "H box" consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10-AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Protein Kinases/metabolism , Proteins/genetics , Proteins/metabolism , Signal Transduction/physiology , Acetoacetates/pharmacology , Amino Acid Sequence , Amino Acid Substitution , Enzyme Induction , Gene Expression Regulation, Enzymologic , Histidine/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation
4.
Microb Cell Fact ; 3(1): 8, 2004 Jun 16.
Article in English | MEDLINE | ID: mdl-15200682

ABSTRACT

This review considers the role of bacterial antizyme in the regulation of polyamine biosynthesis and gives new perspectives on the involvement of antizyme in other significant cellular mechanisms. Antizyme is a protein molecule induced by the end product of the enzymic reaction that it inhibits, in a non-competitive manner. The bacterial ornithine decarboxylase is regulated by nucleotides, phosphorylation and antizyme. The inhibition of ornithine decarboxylase by antizyme can be relieved to different degrees by DNA or by a variety of synthetic nucleic acid polymers, attributed to a specific interaction between nucleic acid and antizyme. Recently, this interplay between bacterial antizyme and nucleic acid was determined by discerning an additional function to antizyme that proved to be the atoC gene product, encoding the response regulator of the bacterial two-component system AtoS-AtoC. The gene located just upstream of atoC encodes the sensor kinase, named AtoS, that modulates AtoC activity. AtoC regulates expression of atoDAEB operon which is involved in short-chain fatty acid metabolism. Antizyme is thus referred to as AtoC, functioning both as a post-translational and transcriptional regulator. Also, the AtoS-AtoC signal transduction system in E. coli has a positive regulatory role on poly-(R)-3-hydroxybutyrate biosynthesis. The properties and gene structural similarities of antizymes from different organisms were compared. It was revealed that conserved domains are present mostly in the C-domain of all antizymes. BLAST analysis of the E. coli antizyme protein (AtoC) showed similarities around 69-58% among proteobacteria, g-proteobacteria, enterobacteria and the thermophilic bacterium Thermus thermophilus. A working hypothesis is proposed for the metabolic role of antizyme (AtoC) describing the significant biological implications of this protein molecule. Whether antizymes exist to other enzymes in different tissues, meeting the criteria discussed in the text remains to be elucidated.

5.
Microb Cell Fact ; 3(1): 5, 2004 May 10.
Article in English | MEDLINE | ID: mdl-15134584

ABSTRACT

The genome sequence analysis of Thermus thermophilus HB27, a microorganism with high biotechnological potential, has recently been published. In that report, the chromosomal and the megaplasmid sequence were compared to those of other organisms and discussed on the basis of their physiological and metabolic features. Out of the 2,218 putative genes identified through the large genome sequencing project, a significant number has potential interest for biotechnology. The present communication will discuss the accumulating information on molecules participating in fundamental biological processes or having potential biotechnological importance.

SELECTION OF CITATIONS
SEARCH DETAIL
...