Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29203486

ABSTRACT

Five bis-arylimidamides were assayed as anti-Trypanosoma cruzi agents by in vitro, in silico, and in vivo approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction. The most selective agent (28SMB032) tested in vivo led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days intraperitoneally) but without mortality protection. In silico target fishing suggested DNA as the main target, but ultrastructural data did not match.


Subject(s)
Amidines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/drug therapy , Male , Mice , Nitroimidazoles/pharmacology , Parasitemia/drug therapy , Parasitic Sensitivity Tests/methods
2.
Parasitology ; 141(3): 367-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24553079

ABSTRACT

Chagas disease (CD) is caused by the intracellular protozoan parasite Trypanosoma cruzi and affects more than 10 million people in poor areas of Latin America. There is an urgent need for alternative drugs with better safety, broader efficacy, lower costs and shorter time of administration. Thus the biological activity of viniconazole, a chloroaryl-substituted imidazole was investigated using in vitro and in vivo screening models of T. cruzi infection. Ultrastructural findings demonstrated that the most frequent cellular damage was associated with plasma membrane (blebs and shedding events), Golgi (swelling aspects) and the appearance of large numbers of vacuoles suggesting an autophagic process. Our data demonstrated that although this compound is effective against bloodstream and intracellular forms (16 and 24 µ m, respectively) in vitro, it does not present in vivo efficacy. Due to the urgent need for novel agents against T. cruzi, the screening of natural and synthetic products must be further supported with the aim of finding more selective and affordable drugs for CD.


Subject(s)
Chagas Disease/drug therapy , Imidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/parasitology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Imidazoles/chemistry , Imidazoles/therapeutic use , Male , Mice , Parasitemia/drug therapy , Parasitemia/parasitology , Parasitic Sensitivity Tests , Primary Cell Culture , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/ultrastructure
3.
Antimicrob Agents Chemother ; 57(11): 5307-14, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23939901

ABSTRACT

In vitro and in vivo activities against Trypanosoma cruzi were evaluated for two sesquiterpene lactones: psilostachyin A and cynaropicrin. Cynaropicrin had previously been shown to potently inhibit African trypanosomes in vivo, and psilostachyin A had been reported to show in vivo effects against T. cruzi, albeit in another test design. In vitro data showed that cynaropicrin was more effective than psilostachyin A. Ultrastructural alterations induced by cynaropicrin included shedding events, detachment of large portions of the plasma membrane, and vesicular bodies and large vacuoles containing membranous structures, suggestive of parasite autophagy. Acute toxicity studies showed that one of two mice died at a cynaropicrin dose of 400 mg/kg of body weight given intraperitoneally (i.p.). Although no major plasma biochemical alterations could be detected, histopathology demonstrated that the liver was the most affected organ in cynaropicrin-treated animals. Although cynaropicrin was as effective as benznidazole against trypomastigotes in vitro, the treatment (once or twice a day) of T. cruzi-infected mice (up to 50 mg/kg/day cynaropicrin) did not suppress parasitemia or protect against mortality induced by the Y and Colombiana strains. Psilostachyin A (0.5 to 50 mg/kg/day given once a day) was not effective in the acute model of T. cruzi infection (Y strain), reaching 100% animal mortality. Our data demonstrate that although it is very promising against African trypanosomes, cynaropicrin does not show efficacy compared to benznidazole in acute mouse models of T. cruzi infection.


Subject(s)
Chagas Disease/drug therapy , Liver/drug effects , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Autophagy/drug effects , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Chagas Disease/mortality , Chagas Disease/parasitology , Lactones/pharmacology , Liver/parasitology , Liver/pathology , Male , Mice , Microscopy, Electron, Transmission , Parasitic Sensitivity Tests , Sesquiterpenes/pharmacology , Survival Analysis , Treatment Failure , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/ultrastructure , Vacuoles/drug effects , Vacuoles/ultrastructure
4.
Antimicrob Agents Chemother ; 57(9): 4151-63, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23774435

ABSTRACT

Chagas disease affects more than 10 million people worldwide, and yet, as it has historically been known as a disease of the poor, it remains highly neglected. Two currently available drugs exhibit severe toxicity and low effectiveness, especially in the chronic phase, while new drug discovery has been halted for years as a result of a lack of interest from pharmaceutical companies. Although attempts to repurpose the antifungal drugs posaconazole and ravuconazole (inhibitors of fungal sterol 14α-demethylase [CYP51]) are finally in progress, development of cheaper and more efficient, preferably Trypanosoma cruzi-specific, chemotherapies would be highly advantageous. We have recently reported that the experimental T. cruzi CYP51 inhibitor VNI cures with 100% survival and 100% parasitological clearance both acute and chronic murine infections with the Tulahuen strain of T. cruzi. In this work, we further explored the potential of VNI by assaying nitro-derivative-resistant T. cruzi strains, Y and Colombiana, in highly stringent protocols of acute infection. The data show high antiparasitic efficacy of VNI and its derivative (VNI/VNF) against both forms of T. cruzi that are relevant for mammalian host infection (bloodstream and amastigotes), with the in vivo potency, at 25 mg/kg twice a day (b.i.d.), similar to that of benznidazole (100 mg/kg/day). Transmission electron microscopy and reverse mutation tests were performed to explore cellular ultrastructural and mutagenic aspects of VNI, respectively. No mutagenic potential could be seen by the Ames test at up to 3.5 µM, and the main ultrastructural damage induced by VNI in T. cruzi was related to Golgi apparatus and endoplasmic reticulum organization, with membrane blebs presenting an autophagic phenotype. Thus, these preliminary studies confirm VNI as a very promising trypanocidal drug candidate for Chagas disease therapy.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Chagas Disease/drug therapy , Imidazoles/pharmacology , Oxadiazoles/pharmacology , Protozoan Proteins/antagonists & inhibitors , Sterol 14-Demethylase/metabolism , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , 14-alpha Demethylase Inhibitors/chemistry , Animals , Chagas Disease/mortality , Chagas Disease/parasitology , Drug Resistance/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/ultrastructure , Imidazoles/chemistry , Male , Mice , Microscopy, Electron, Transmission , Nitroimidazoles/pharmacology , Oxadiazoles/chemistry , Protozoan Proteins/metabolism , Thiazoles/pharmacology , Triazoles/pharmacology , Trypanocidal Agents/chemistry , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...