Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731942

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Subject(s)
Acinar Cells , Carcinoma, Pancreatic Ductal , Metaplasia , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Reactive Oxygen Species , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mice , Reactive Oxygen Species/metabolism , Humans , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Metaplasia/metabolism , Metaplasia/genetics , Acinar Cells/metabolism , Acinar Cells/pathology , Mice, Transgenic , Chemokines, CC/metabolism , Chemokines, CC/genetics , Macrophage Inflammatory Proteins/metabolism , Macrophage Inflammatory Proteins/genetics , Pancreas/metabolism , Pancreas/pathology
2.
Cancers (Basel) ; 15(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37173913

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, currently has a dismal five-year survival rate of approximately 10% due to late diagnosis and a lack of efficient treatment options such as surgery. Furthermore, the majority of PDAC patients have surgically unresectable cancer, meaning cancer cells have either reached the surrounding blood vessels or metastasized to other organs distant from the pancreas area, resulting in low survival rates as compared to other types of cancers. In contrast, the five-year survival rate of surgically resectable PDAC patients is currently 44%. The late diagnosis of PDAC is a result of little or no symptoms in its early stage of development and a lack of specific biomarkers that may be utilized in routine examinations in the clinic. Although healthcare professionals understand the importance of early detection of PDAC, the research on the subject has lagged and no significant changes in the death toll of PDAC patients has been observed. This review is focused on understanding potential biomarkers that may increase the early diagnosis of PDAC patients at its surgically resectable stage. Here, we summarize the currently available biomarkers used in the clinic as well as those being developed with the hope of providing insight into the future of liquid biomarkers to be used in routine examinations for the early diagnosis of PDAC.

3.
iScience ; 26(6): 106820, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37250781

ABSTRACT

The innate immune system has a key role in pancreatic cancer initiation, but the specific contribution of different macrophage populations is still ill-defined. While inflammatory (M1) macrophages have been shown to drive acinar-to-ductal metaplasia (ADM), a cancer initiating event, alternatively activated (M2) macrophages have been attributed to lesion growth and fibrosis. Here, we determined cytokines and chemokines secreted by both macrophage subtypes. Then, we analyzed their role in ADM initiation and lesion growth, finding that while M1 secrete TNF, CCL5, and IL-6 to drive ADM, M2 induce this dedifferentiation process via CCL2, but the effects are not additive. This is because CCL2 induces ADM by generating ROS and upregulating EGFR signaling, thus using the same mechanism as cytokines from inflammatory macrophages. Therefore, while effects on ADM are not additive between macrophage polarization types, both act synergistically on the growth of low-grade lesions by activating different MAPK pathways.

4.
Life (Basel) ; 13(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36836690

ABSTRACT

Prostate cancer is the most prevalent type of cancer in senior American men. Currently, the five-year survival rate after the initial diagnosis of prostate cancer is close to 100%. However, it is also the second leading cause of cancer death in senior men due to the dissemination of prostate cancer cells outside of the prostate causing growth in other organs, known as metastatic prostate cancer. The tumor microenvironment (TME) plays a critical role in the development, progression and metastasis of prostate cancer. One of the major components of the TME contains various types of immune cells, often recruited by cancer cells to the cancer formation areas. The interactions among prostate cancer cells and the infiltrating immune cells affect the outcome of prostate cancer. Here, we summarize the mechanisms various infiltrating immune cells use to regulate prostate cancer metastasis and possibly lead to the development of treatment strategies. Furthermore, the information here may also give rise to preventative strategies that focus on targeting the TME of prostate cancer patients.

5.
iScience ; 25(5): 104327, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35602933

ABSTRACT

Desmoplasia around pancreatic lesions is a barrier for immune cells and a hallmark of developing and established pancreatic cancer. However, the contribution of the innate immune system to this process is ill-defined. Using the KC mouse model and primary cells in vitro, we show that alternatively activated macrophages (AAM) crosstalk with pancreatic lesion cells and pancreatic stellate cells (PSCs) to mediate fibrosis and progression of lesions. TGFß1 secreted by AAM not only drives activation of quiescent PSCs but also in activated PSCs upregulates expression of TIMP1, a factor previously shown as crucial in fibrosis. Once activated, PSCs auto-stimulate proliferation via CXCL12. Furthermore, we found that TIMP1/CD63 signaling mediates PanIN lesion growth and TGFß1 contributes to a cadherin switch and drives structural collapse of lesions, indicating a potential progression step. Taken together, our data indicate TGFß1 produced by Ym1+ AAM as a major driver of processes that initiate the development of pancreatic cancer.

6.
Cancers (Basel) ; 14(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35565279

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is well known for its high death rate due to prompt cancer metastasis caused by cancer cell migration and invasion within the early stages of its development. Here, we reveal a new function of cytokine CCL15, namely the upregulation of PDAC cell migration and invasion. We showed increased levels of CCL15 transcripts and protein expressions in human PDAC tissue samples, as well as in cultured cell lines. Furthermore, PDAC cells also expressed CCL15 receptors, including CCR1 and CCR3. Murine PDAC cell lines and tissues strengthened this finding. The manipulation of CCL15 in metastatic Panc-1 cells through CCL15 knockdown or CCL15 neutralization decreased Panc-1 cell motility and invasiveness. In addition, treating non-metastatic BxPC-3 cells with recombinant CCL15 accelerated the cell migration of BxPC-3. A reduction in the levels of reactive oxygen species (ROS) by either N-Acetyl-L-Cysteine treatment or p22phox knockdown led to a decrease in Panc-1 cell migration and a reversed effect on recombinant CCL15-promoted BxPC-3 cell movement. Importantly, the knockdown of oncogenic Kras in Panc-1 cells abolished CCL15 protein expression and impeded cell migration without affecting PDAC cell growth. Altogether, our work elucidates an additional molecular pathway of oncogenic Kras to promote PDAC metastasis through the upregulation of cell migration and invasion by the Kras downstream CCL15, a lesser-known cytokine within the cancer research field.

7.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457063

ABSTRACT

Prostate cancer development and progression are associated with increased infiltrating macrophages. Prostate cancer is derived from prostatic intraepithelial neoplasia (PIN) lesions. However, the effects macrophages have on PIN progression remain unclear. Here, we showed that the recruited macrophages adjacent to PIN expressed M2 macrophage markers. In addition, high levels of Spp1 transcripts, also known as osteopontin, were identified in these macrophages. Extraneously added Spp1 accelerated PIN cell proliferation through activation of Akt and JNK in a 3D culture setting. We also showed that PIN cells expressed CD44, integrin αv, integrin ß1, and integrin ß3, all of which have been previously reported as receptors for Spp1. Finally, blockade of Akt and JNK activation through their specific inhibitor completely abolished macrophage Spp1-induced cell proliferation of PIN. Hence, our data revealed Spp1 as another macrophage cytokine/growth factor and its mediated mechanism to upregulate PIN cell growth, thus promoting prostate cancer development.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Cytokines/pharmacology , Humans , Macrophages/pathology , Male , Osteopontin/genetics , Prostate/pathology , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt
8.
Antioxidants (Basel) ; 11(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35052641

ABSTRACT

Pancreatic acinar-to-ductal metaplasia (ADM) is a reversible process that occurs after pancreatic injury, but becomes permanent and leads to pancreatic lesions in the presence of an oncogenic mutation in KRAS,. While inflammatory macrophage-secreted chemokines, growth factors that activate epidermal growth factor receptor (EGFR) and oncogenic KRAS have been implicated in the induction of ADM, it is currently unclear whether a common underlying signaling mechanism exists that drives this process. In this study, we show that different inducers of ADM increase levels of hydrogen peroxide, most likely generated at the mitochondria, and upregulate the expression of Protein Kinase D1 (PKD1), a kinase that can be activated by hydrogen peroxide. PKD1 expression in acinar cells affects their survival and mediates ADM, which is in part due to the PKD1 target NF-κB. Overall, our data implicate ROS-PKD1 signaling as a common feature of different inducers of pancreatic ADM.

9.
Cancers (Basel) ; 13(9)2021 May 03.
Article in English | MEDLINE | ID: mdl-34063667

ABSTRACT

The cell environment plays a pivotal role in determining cellular outcome, as well as cancer initiation, progression, and dissemination. Within this environment, in addition to the structural components, such as the extracellular matrix, there are various types of cells surrounding the tumor cells. Communication among these cells and the tumor cells via signaling pathways is important for tumor growth. Originally discovered in patients with immunodeficiency X-linked gammaglobulinemia, the Bruton's tyrosine kinase (BTK) signaling pathway, known for its role in B cell maturation, is critical to cancer cell proliferation, metastasis and evasion of cancer eliminating cells. Given that BTK inhibitors have been FDA approved for chronic lymphocytic leukemia/small lymphocytic lymphoma and that the majority of BTK studies have been focused on B cells, the use of BTK inhibitors as a future treatment strategy of solid tumors has yet to be evaluated. In this review, we summarize studies analyzing BTK signaling within the cells found in the tumor microenvironment, as well as clinical trial where BTK inhibitors are currently being used to target the tumor microenvironment as a way to combat solid tumors.

10.
iScience ; 24(1): 102019, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33521594

ABSTRACT

Doublecortin-like kinase 1 (DCLK1)-positive pancreatic cancer stem cells develop at a precancerous stage and may contribute to the lack of efficacy of pancreatic cancer therapy. Although PanIN cells express oncogenic KRas and have an increased activity of epidermal growth factor receptor (EGFR), we demonstrate that, in DCLK1+ PanIN cells, EGFR signaling is not propagated to the nucleus. Mimicking blockage of EGFR with erlotinib in PanIN organoid culture or in p48cre;KrasG12D mice led to a significant increase in DCLK1+ PanIN cells. As a mechanism of how EGFR inhibition leads to formation of DCLK1+ cells, we identify an increase in hydrogen peroxide contributing to activation of Protein Kinase D1 (PKD1). Active PKD1 then drives stemness and abundance of DCLK1+ cells in lesions. Our data suggest a signaling mechanism that leads to the development of DCLK1+ pancreatic cancer stem cells, which can be exploited to target this population in potential therapeutic approaches.

11.
FEBS J ; 288(6): 1871-1886, 2021 03.
Article in English | MEDLINE | ID: mdl-32865335

ABSTRACT

The risk factors for prostate cancer include a high-fat diet and obesity, both of which are associated with an altered cell environment including increased inflammation. It has been shown that chronic inflammation due to a high-fat diet or bacterial infection has the potential to accelerate prostate cancer as well as its precursor, prostatic intraepithelial neoplasia (PIN), development. However, the underlying mechanism of how chronic inflammation promotes prostate cancer development, especially PIN, remains unclear. In this study, we showed that more macrophages were present in PIN areas as compared to the normal areas of human prostate. When co-culturing PIN cells with macrophages in 3D, more PIN cells had nuclear localized cyclin D1, indicating that macrophages enhanced PIN cell proliferation. We identified ICAM-1 and CCL2 as chemoattractants expressed by PIN cells to recruit macrophages. Furthermore, we discovered that macrophage-secreted cytokines including C5a, CXCL1, and CCL2 were responsible for increased PIN cell proliferation. These three cytokines activated ERK and JNK signaling in PIN cells through a ligand-receptor interaction. However, only blockade of ERK abolished macrophage cytokines-induced cell proliferation of PIN. Overall, our results provide a mechanistic view on how macrophages activated through chronic inflammation can expedite PIN progression during prostate cancer development. The information from our work can facilitate a comprehensive understanding of prostate cancer development, which is required for improvement of current strategies for prostate cancer therapy.


Subject(s)
Cell Proliferation/physiology , Cytokines/metabolism , MAP Kinase Signaling System/physiology , Macrophages/metabolism , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Neoplasms/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Cytokines/immunology , Humans , Intercellular Adhesion Molecule-1/metabolism , MAP Kinase Signaling System/drug effects , Macrophages/cytology , Male , Mice , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/pathology , RAW 264.7 Cells
12.
Cells ; 9(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283687

ABSTRACT

The immune response is critical in the maintenance of an organism's health. The immune response can be broken down into two groups. The innate response, which is fast-acting and rids the body of most foreign material before infection occurs, and the adaptive response, a more specific defense against pathogen composed mostly of antibody production and killer cells. Linking the two responses via cytokine and chemokine secretion are macrophages, motile phagocytic cells that ingest and present foreign material playing a role in the innate and adaptive immune response. Although macrophages are necessary for the survival of an organism, studies have also shown macrophages play a more sinister role in the initiation, progression, and metastasis in tumorous cells. In this comprehensive review, we show how macrophages induce such a response through abnormal cellular signaling and creating a cellular microenvironment conducive for tumor growth and metastasis, as well as the future outlook of this field.


Subject(s)
Macrophages/immunology , Neoplasms/physiopathology , Humans , Signal Transduction , Tumor Microenvironment
13.
Cancer Res ; 79(7): 1535-1548, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30696657

ABSTRACT

During development of pancreatic cancer, alternatively activated macrophages contribute to fibrogenesis, pancreatic intraepithelial neoplasia (PanIN) lesion growth, and generation of an immunosuppressive environment. Here, we show that the immunomodulatory agent pomalidomide depletes pancreatic lesion areas of alternatively activated macrophage populations. Pomalidomide treatment resulted in downregulation of interferon regulatory factor 4, a transcription factor for M2 macrophage polarization. Pomalidomide-induced absence of alternatively activated macrophages led to a decrease in fibrosis at PanIN lesions and in syngeneic tumors; this was due to generation of an inflammatory, immune-responsive environment with increased expression of IL1α and presence of activated (IFNγ-positive) CD4+ and CD8+ T-cell populations. Our results indicate that pomalidomide could be used to decrease fibrogenesis in pancreatic cancer and may be ideal as a combination treatment with chemotherapeutic drugs or other immunotherapies. SIGNIFICANCE: These findings reveal new insights into how macrophage populations within the pancreatic cancer microenvironment can be modulated, providing the means to turn the microenvironment from immunosuppressive to immune-responsive.


Subject(s)
Immunologic Factors/pharmacology , Macrophages/immunology , Pancreatic Neoplasms/immunology , Precancerous Conditions/immunology , Thalidomide/analogs & derivatives , Animals , Humans , Interferon Regulatory Factors/metabolism , Mice , Pancreatic Neoplasms/metabolism , Precancerous Conditions/metabolism , Thalidomide/pharmacology , Tumor Microenvironment , U937 Cells
14.
Int J Biochem Cell Biol ; 106: 1-7, 2019 01.
Article in English | MEDLINE | ID: mdl-30399449

ABSTRACT

Cancer stem cells are the cancer cells that have abilities to self-renew, differentiate into defined progenies, and initiate and maintain tumor growth. They also contribute to cancer metastasis and therapeutic resistance, both of which are the major causes of cancer mortality. Among the reported makers of the cancer stem cells, CD133 is the most well-known marker for isolating and studying cancer stem cells in different types of cancer. The CD133high population of cancer cells are not only capable of self-renewal, proliferation, but also highly metastatic and resistant to therapy. Despite very limited information on physiological functions of CD133, many ongoing studies are aimed to reveal the mechanisms that CD133 utilizes to modulate cancer dissemination and drug resistance with a long-term goal for bringing down the number of cancer deaths. In this review, in addition to the regulation of CD133, and its involvement in cancer initiation, and development, the recent updates on how CD133 modulates cancer dissemination, and therapeutic resistance are provided. The key signaling pathways that are upstream or downstream of CD133 during these processes are summarized. A comprehensive understanding of CD133-mediated cancer initiation, development, and dissemination through its pivotal role in cancer stem cells will offer new strategies in cancer therapy.


Subject(s)
AC133 Antigen/metabolism , Biomarkers, Tumor/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction , Animals , Humans , Neoplasm Metastasis , Neoplastic Stem Cells/pathology
15.
Sci Rep ; 8(1): 7718, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769604

ABSTRACT

Macrophage infiltrations (inflammation) are associated with prostate disorders such as prostatitis, prostatic hyperplasia and prostate cancer. All prostate disorders have elevated cell proliferation, and are initiated from normal prostate epithelial cells. To date, the mechanism of how macrophages regulate normal prostate epithelial cell proliferation remains largely unknown. Using a 3D co-culture system, we here show that Raw 264.7 macrophages increased cell proliferation of normal prostate epithelial PZ-HPV-7 cells. In addition, these Raw 264.7 macrophages expressed higher levels of Ym1 and CD206. We further identify macrophage-secreted cytokines including CCL3, IL-1ra, osteopontin, M-CSF1 and GDNF as mediators for potentiating PZ-HPV-7 cell proliferation in 3D. All these cytokines differentially activated ERK and Akt. Blockade of both kinases through their inhibitors hindered macrophage-induced cell proliferation of PZ-HPV-7 cells. Hence, our data provide mechanistic insight of how inflammation may contribute to development of prostatic diseases at a very early stage through augment of cell proliferation of normal prostate epithelial cells.


Subject(s)
Cell Proliferation , Cytokines/metabolism , Macrophages/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Prostate/pathology , Prostatic Hyperplasia/pathology , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured , Humans , Macrophages/cytology , Macrophages/immunology , Male , Prostate/immunology , Prostate/metabolism , Prostatic Hyperplasia/immunology , Prostatic Hyperplasia/metabolism , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatitis/immunology , Prostatitis/metabolism , Prostatitis/pathology
16.
Pancreas ; 46(9): 1202-1207, 2017 10.
Article in English | MEDLINE | ID: mdl-28902792

ABSTRACT

OBJECTIVE: We aimed to evaluate the contribution of acinar-to-ductal metaplasia (ADM) to the accumulation of cells with a ductal phenotype in cultured human exocrine pancreatic tissues and reveal the underlying mechanism. METHODS: We sorted and cultured viable cell populations in human exocrine pancreatic tissues with a flow cytometry-based lineage tracing method to evaluate possible mechanisms of ADM. Cell surface markers, gene expression pattern, and sphere formation assay were used to examine ADM. RESULTS: A large proportion of acinar cells gained CD133 expression during the 2-dimensional culture and showed down-regulation of acinar markers and up-regulation of ductal markers, assuming an ADM phenotype. In a serum-free culture condition, ADM induction was mainly dependent on transforming growth factor ß (TGF-ß) secreted from cultured ductal cells. Human acinar cells when cultured alone for a week in a serum-free condition do not undergo ADM. However, serum may contain other factors besides TGF-ß to induce ADM in human acinar cells. In addition, we found that TGF-ß cannot induce ADM of murine acinar cells. CONCLUSIONS: Ductal cells are the major source of TGF-ß that induces ADM in cultured human exocrine pancreatic tissues. This culture system might be a useful model to investigate the mechanism of ADM in human cells.


Subject(s)
Acinar Cells/metabolism , Pancreas, Exocrine/metabolism , Pancreatic Ducts/metabolism , Transforming Growth Factor beta/metabolism , Acinar Cells/pathology , Animals , Cells, Cultured , Flow Cytometry , Gene Expression , Humans , Metaplasia , Mice , Pancreatic Ducts/pathology , Paracrine Communication , Reverse Transcriptase Polymerase Chain Reaction , Tissue Culture Techniques , Transforming Growth Factor beta/genetics
17.
J Pathol ; 243(1): 65-77, 2017 09.
Article in English | MEDLINE | ID: mdl-28639695

ABSTRACT

Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3ß) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3ß promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3ß attenuates caerulein-induced ADM formation and PanIN progression in KrasG12D transgenic mice. Furthermore, we demonstrate that GSK-3ß ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3ß regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3ß participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Acinar Cells/enzymology , Carcinoma in Situ/prevention & control , Cell Transdifferentiation , Glycogen Synthase Kinase 3 beta/deficiency , Pancreas, Exocrine/enzymology , Pancreatic Ducts/enzymology , Pancreatic Neoplasms/prevention & control , Pancreatitis/enzymology , Acinar Cells/drug effects , Acinar Cells/pathology , Animals , Carcinoma in Situ/enzymology , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Cell Proliferation , Cell Transdifferentiation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Ceruletide , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Glycogen Synthase Kinase 3 beta/genetics , Homeodomain Proteins/genetics , Male , Metaplasia , Mice, Knockout , Pancreas, Exocrine/drug effects , Pancreas, Exocrine/pathology , Pancreatic Ducts/drug effects , Pancreatic Ducts/pathology , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/pathology , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Time Factors , Trans-Activators/genetics , Tumor Necrosis Factor-alpha/pharmacology
18.
Cell Rep ; 19(7): 1322-1333, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28514653

ABSTRACT

The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Interleukin-13/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Polarity , Cell Proliferation , Fibrosis , Inflammation/pathology , Macrophages/pathology , Metaplasia , Mice , Neutralization Tests , Pancreatic Ducts/metabolism
19.
J Immunol Res ; 2017: 7979637, 2017.
Article in English | MEDLINE | ID: mdl-29379802

ABSTRACT

Inflammation is essential for many diseases including cancer. Activation and recruitment of immune cells during inflammation result in a cytokine- and chemokine-enriched cell environment, which affects cancer development. Since each type of cancer has its unique tumor environment, effects of cytokines from different sources such as tumor-infiltrating immune cells, stromal cells, endothelial cells, and cancer cells on cancer development can be quite complex. In this review, how immune cells contribute to tumorigenesis of pancreatic and prostate cancers through their secreted cytokines is discussed. In addition, the cytokine signaling that tumor cells of pancreatic and prostate cancers utilize to benefit their own survival is delineated.


Subject(s)
Cytokines/metabolism , Inflammation Mediators/metabolism , Inflammation/immunology , Pancreatic Neoplasms/immunology , Prostatic Neoplasms/immunology , Animals , Carcinogenesis , Humans , Male , Signal Transduction
20.
Mol Cell Oncol ; 3(1): e1035477, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27308552

ABSTRACT

Pancreatic ductal adenocarcinoma originates from acinar cells that undergo acinar-to-ductal metaplasia (ADM). ADM is initiated in response to growth factors, inflammation, and oncogene activation and leads to a de-differentiated, duct-like phenotype. Our recent publication demonstrated a transforming growth factor α-Kras(G12D)-protein kinase D1-Notch1 signaling axis driving the induction of ADM and further progression to pancreatic intraepithelial neoplasia. This suggests that protein kinase D1 might be an early marker for tumor development and a potential target for drug development.

SELECTION OF CITATIONS
SEARCH DETAIL
...