Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294281, 2023.
Article in English | MEDLINE | ID: mdl-37948468

ABSTRACT

Significant heat-related casualties underlie the urgency of establishing a heat-health warning system (HHWS). This paper presents an evidence-based pilot HHWS developed for Taipei City, Taiwan, through a co-design process engaging stakeholders. In the co-design process, policy concerns related to biometeorology, epidemiology and public health, and risk communication aspects were identified, with knowledge gaps being filled by subsequent findings. The biometeorological results revealed that Taipei residents were exposed to wet-bulb globe temperature (WBGT) levels of health concern for at least 100 days in 2016. The hot spots and periods identified using WBGT would be missed out if using temperature, underlining the importance of adopting an appropriate heat indicator. Significant increases in heat-related emergency were found in Taipei at WBGT exceeding 36°C with reference-adjusted risk ratio (RaRR) of 2.42, taking 30°C as the reference; and residents aged 0-14 had the highest risk enhancement (RaRR = 7.70). As for risk communication, occurring frequency was evaluated to avoid too frequent warnings, which would numb the public and exhaust resources. After integrating knowledge and reconciling the different preferences and perspectives, the pilot HHWS was co-implemented in 2018 by the science team and Taipei City officials; accompanying responsive measures were formulated for execution by ten city government departments/offices. The results of this pilot served as a useful reference for establishing a nationwide heat-alert app in 2021/2022. The lessons learnt during the interactive co-design processes provide valuable insights for establishing HHWSs worldwide.


Subject(s)
Heat Stress Disorders , Occupational Exposure , Humans , Hot Temperature , Heat Stress Disorders/prevention & control , Heat Stress Disorders/epidemiology , Temperature , Cities
2.
Article in English | MEDLINE | ID: mdl-29933645

ABSTRACT

Fine particulate matter (PM2.5) has a small particle size, which allows it to directly enter the respiratory mucosa and reach the alveoli and even the blood. Many countries are already aware of the adverse effects of PM2.5, and determination of the sources of PM2.5 is a critical step in reducing its concentration to protect public health. This study monitored PM2.5 in the summer (during the southwest monsoon season) of 2017. Three online monitoring systems were used to continuously collect hourly concentrations of key chemical components of PM2.5, including anions, cations, carbon, heavy metals, and precursor gases, for 24 h per day. The sum of the concentrations of each compound obtained from the online monitoring systems is similar to the actual PM2.5 concentration (98.75%). This result suggests that the on-line monitoring system of this study covers relatively complete chemical compounds. Positive matrix factorization (PMF) was adopted to explore and examine the proportion of each source that contributed to the total PM2.5 concentration. According to the source contribution analysis, 55% of PM2.5 can be attributed to local pollutant sources, and the remaining 45% can be attributed to pollutants emitted outside Taipei City. During the high-PM2.5-concentration (episode) period, the pollutant conversion rates were higher than usual due to the occurrence of vigorous photochemical reactions. Moreover, once pollutants are emitted by external stationary pollutant sources, they move with pollution air masses and undergo photochemical reactions, resulting in increases in the secondary pollutant concentrations of PM2.5. The vertical monitoring data indicate that there is a significant increase in PM2.5 concentration at high altitudes. High-altitude PM2.5 will descend to the ground and thereby affect the ground-level PM2.5 concentration.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Particulate Matter/analysis , Cities , Particle Size , Seasons , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...