Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 5(1): 154-157, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-35668591

ABSTRACT

Semiconducting polymer dots (Pdots) recently have emerged as a new class of extraordinarily bright fluorescent probes with promising applications in biological imaging and sensing. Herein multicolor semiconducting polymer nanoparticles (Pdots) were designed using benzothiadiazole (BT) as the acceptor, and various types of donors were incorporated to modulate their emission wavelengths. Specific cellular targeting and in vivo biotoxicity as well as microangiography imaging on zebrafish indicated these BT-based Pdots are promising candidates for biological applications.

2.
ACS Appl Mater Interfaces ; 6(23): 21585-95, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25394668

ABSTRACT

In recent years, semiconducting polymer dots (Pdots) have emerged as a novel class of extraordinarily bright fluorescent probes with burgeoning applications in bioimaging and sensing. While the desire for near-infrared (NIR)-emitting agents for in vivo biological applications increases drastically, the direct synthesis of semiconducting polymers that can form Pdots with ultrahigh fluorescence brightness is extremely lacking due to the severe aggregation-caused quenching of the NIR chromophores in Pdots. Here we describe the synthesis of dithienylbenzoselenadiazole (DBS)-based NIR-fluorescing Pdots with ultrahigh brightness and excellent photostability. More importantly, the fluorescence quantum yields of these Pdots could be effectively increased by the introduction of long alkyl chains into the thiophene rings of DBS to significantly inhibit the aggregation-caused emission quenching. Additionally, these new series of DBS-based Pdots can be excited by a commonly used 488 nm laser and show a fluorescence quantum yield as high as 36% with a Stokes shift larger than 200 nm. Single-particle analysis indicates that the per-particle brightness of the Pdots is at least 2 times higher than that of the commercial quantum dot (Qdot705) under identical laser excitation and acquisition conditions. We also functionalized the Pdots with carboxylic acid groups and then linked biomolecules to Pdot surfaces to demonstrate their capability for specific cellular labeling without any noticeable nonspecific binding. Our results suggest that these DBS-based NIR-fluorescing Pdots will be very practical in various biological imaging and analytical applications.


Subject(s)
Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Semiconductors , Fluorescence , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...