Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Interferon Cytokine Res ; 42(6): 251-266, 2022 06.
Article in English | MEDLINE | ID: mdl-35527626

ABSTRACT

Interferon beta (IFNß) is a well-known cytokine, belonging to the type I family, that exerts antiviral, immunomodulatory, and antiproliferative activity. It has been reported that the artificially deamidated form of recombinant IFNß-1a at Asn25 position shows an increased biological activity. As a deepening of the previous study, the molecular mechanism underlying this biological effect was investigated in this work by combining experimental and computational techniques. Specifically, the binding to IFNAR1 and IFNAR2 receptors and the canonical pathway of artificially deamidated IFNß-1a molecule were analyzed in comparison to the native form. As a result, a change in receptor affinity of deamidated IFNß-1a with respect to the native form was observed, and to better explore this molecular interaction, molecular dynamics simulations were carried out. Results confirmed, as previously hypothesized, that the N25D mutation can locally change the interaction network of the mutated residue but also that this effect can be propagated throughout the molecule. In fact, many residues not involved in the interaction with IFNAR1 in the native form participate to the recognition in the deamidated molecule, enhancing the binding to IFNAR1 receptor and consequently an increase of signaling cascade activation. In particular, a higher STAT1 phosphorylation and interferon-stimulated gene expression was observed under deamidated IFNß-1a cell treatment. In conclusion, this study increases the scientific knowledge of deamidated IFNß-1a, deciphering its molecular mechanism, and opens new perspectives to novel therapeutic strategies.


Subject(s)
Antiviral Agents , Interferon-beta , Antiviral Agents/metabolism , Immunologic Factors , Interferon beta-1a , Interferon-beta/metabolism , Interferons , Signal Transduction
2.
Nat Commun ; 9(1): 3921, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237396

ABSTRACT

The original version of this Article contained an error in the spelling of the author Miriam Gaggianesi, which was incorrectly given as Miriam Giaggianesi. Furthermore, the affiliation details for Gabriella Gaudioso, Valentina Vaira, and Silvano Bosari incorrectly omitted 'Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy'. Finally, the affiliation details for Alice Turdo, Miriam Gaggianesi, Aurora Chinnici and Elisa Lipari were incorrectly given as 'Dipartimento di Biotecnologie Mediche e Medicina Legale Sezione di Biochimica Medica, Facoltà di Medicina e Chirurgia, Policlinico "P.Giaccone", Università di Palermo, Palermo, 90127, Italy'. The correct affiliation is 'Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, 90127, Italy'. These errors have now been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 1024, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523784

ABSTRACT

Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers.


Subject(s)
Breast Neoplasms/metabolism , Epigenesis, Genetic , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/physiopathology , Carcinogenesis , Cell Line, Tumor , Cellular Reprogramming , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, SCID , Neoplastic Stem Cells/cytology
4.
Cancer Res ; 77(12): 3268-3279, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28400477

ABSTRACT

The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor-positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4Rα antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24- cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4 by inhibiting NF-κB. Enforced expression of DUSP4 drove conversion of metastatic cells to nonmetastatic cells. Mechanistically, RNAi-mediated attenuation of DUSP4 activated the ERK and p38 MAPK pathways, increased stem-like properties, and spawned metastatic capacity. Targeting IL4 signaling sensitized breast cancer cells to anticancer therapy and strengthened immune responses by enhancing the number of IFNγ-positive CTLs. Our results showed the role of IL4 in promoting breast cancer aggressiveness and how its targeting may improve the efficacy of current therapies. Cancer Res; 77(12); 3268-79. ©2017 AACR.


Subject(s)
Breast Neoplasms/pathology , Dual-Specificity Phosphatases/metabolism , Interleukin-4/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Tumor Microenvironment , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Female , Flow Cytometry , Heterografts , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...