Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(11): e2306683, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183347

ABSTRACT

3D bioprinting holds great promise for meeting the increasing need for transplantable tissues and organs. However, slow printing, interlayer mixing, and the extended exposure of cells to non-physiological conditions in thick structures still hinder clinical applications. Here the DeepFreeze-3D (DF-3D) procedure and bioink for creating multilayered human-scale tissue mimetics is presented for the first time. The bioink is tailored to support stem cell viability, throughout the rapid freeform DF-3D biofabrication process. While the printer nozzle is warmed to room temperature, each layer solidifies at contact with the stage (-80 °C), or the subsequent layers, ensuring precise separation. After thawing, the encapsulated stem cells remain viable without interlayer mixing or delamination. The composed cell-laden constructs can be cryogenically stored and thawed when needed. Moreover, it is shown that under inductive conditions the stem cells differentiate into bone-like cells and grow for months after thawing, to form large tissue-mimetics in the scale of centimeters. This is important, as this approach allows the generation and storage of tissue mimetics in the size and thickness of human tissues. Therefore, DF-3D biofabrication opens new avenues for generating off-the-shelf human tissue analogs. It further holds the potential for regenerative treatments and for studying tissue pathologies caused by disease, tumor, or trauma.


Subject(s)
Bioprinting , Tissue Engineering , Humans , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Printing, Three-Dimensional , Bioprinting/methods , Bioengineering , Stem Cells
2.
Cell Rep ; 36(13): 109758, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34592158

ABSTRACT

Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.


Subject(s)
Ear, Inner/metabolism , Hair Cells, Auditory/metabolism , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , Spiral Ganglion/metabolism , Animals , Cochlea/metabolism , Cochlea/physiopathology , Ear, Inner/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Noise-Induced/genetics , Mice , Neurons/metabolism , Noise , Spiral Ganglion/cytology , Spiral Ganglion/physiopathology
3.
Development ; 147(17)2020 09 11.
Article in English | MEDLINE | ID: mdl-32917668

ABSTRACT

Despite the known importance of the transcription factors ATOH1, POU4F3 and GFI1 in hair cell development and regeneration, their downstream transcriptional cascades in the inner ear remain largely unknown. Here, we have used Gfi1cre;RiboTag mice to evaluate changes to the hair cell translatome in the absence of GFI1. We identify a systematic downregulation of hair cell differentiation genes, concomitant with robust upregulation of neuronal genes in the GFI1-deficient hair cells. This includes increased expression of neuronal-associated transcription factors (e.g. Pou4f1) as well as transcription factors that serve dual roles in hair cell and neuronal development (e.g. Neurod1, Atoh1 and Insm1). We further show that the upregulated genes are consistent with the NEUROD1 regulon and are normally expressed in hair cells prior to GFI1 onset. Additionally, minimal overlap of differentially expressed genes in auditory and vestibular hair cells suggests that GFI1 serves different roles in these systems. From these data, we propose a dual mechanism for GFI1 in promoting hair cell development, consisting of repression of neuronal-associated genes as well as activation of hair cell-specific genes required for normal functional maturation.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation , Hair Cells, Auditory, Inner/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Hair Cells, Auditory, Inner/cytology , Mice , Mice, Transgenic , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factor Brn-3A/genetics , Transcription Factor Brn-3A/metabolism , Transcription Factors/genetics
4.
Otolaryngol Clin North Am ; 53(4): 531-542, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32362563

ABSTRACT

Cochlear damage is often thought to result in hearing thresholds shift, whether permanent or temporary. The report of tinnitus in the absence of any clear deficit in cochlear function was believed to indicate that hearing loss and tinnitus, while comorbid, could arise independently from each other. In all likelihood, tinnitus that is not of central nervous system origin is associated with hearing loss. As a correlate, although a treatment of most forms of tinnitus will likely emerge in the years to come, curing tinnitus will first require curing hearing loss.


Subject(s)
Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced/etiology , Noise/adverse effects , Tinnitus/etiology , Acoustic Stimulation , Auditory Threshold , Hearing , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/physiopathology , Humans , Tinnitus/diagnosis , Tinnitus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...