Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903065

ABSTRACT

The present paper investigates the viscoelastic stress-strain responses of laboratory and plant produced warm mix asphalt mixtures containing basalt fiber dispersed reinforcement. The investigated processes and mixture components were evaluated for their efficacy in producing highly performing asphalt mixtures with decreased mixing and compaction temperatures. Surface course asphalt concrete (AC-S 11 mm) and high modulus asphalt concrete (HMAC 22 mm) conventionally and using a warm mix asphalt technique with foamed bitumen and a bio-derived fluxing additive. The warm mixtures included lowered production temperature (by 10 °C) and lowered compaction temperatures (by 15 °C and 30 °C). The complex stiffness moduli of the mixtures were assessed under cyclic loading tests at combinations of four temperatures and five loading frequencies. It was found that the warm produced mixtures were characterized by lower dynamic moduli than the reference mixtures in the whole spectrum of loading conditions, however, the mixtures compacted at the 30 °C lower temperature performed better than the mixtures compacted at 15 °C lower temperature, specifically when highest testing temperatures are considered. The differences in the performance of plant and laboratory produced mixtures were ascertained to be nonsignificant. It was concluded that the differences in stiffness of hot mix and warm mixtures can be attributed to the inherent properties of foamed bitumen mixtures and that these differences should shrink in time.

2.
Materials (Basel) ; 16(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36984047

ABSTRACT

This paper presents the results of an analysis of the changes in the stiffness of asphalt binders modified with a bio-flux additive and subjected to the processes of foaming and short-term ageing. The purpose of the analyses was to determine changes in the rheological properties of asphalt binder as a result of technological processes characteristic of hot and warm mix asphalt technology. Three asphalt binders with similar penetration but varying degrees of polymer modification were tested: 50/70, 45/80-55 polymer-modified bitumen, and 45/80-80 highly modified bitumen. Tests were carried out on four groups of binders: original binders, foamed binders after 14 days of storage, non-foamed binders after Rolling Thin Film Oven Test (RTFOT) ageing, and foamed binders after 14 days of storage subjected to RTFOT ageing. The master curves of the complex shear modulus G* were analysed, and three indexes of binder stiffening were determined, characterising the investigated effects. The tests showed that some of the stiffening indices significantly depended on the degree of polymer modification and the content of the bio-flux additive. Moreover, it was found that the foaming process in the case of paving-grade bitumen and polymer-modified bitumen did not contribute to the additional stiffening of the binders.

3.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676251

ABSTRACT

The study investigated the effects of laboratory ageing on the fluxed and water-foamed asphalt binders in scope of Fourier transform infrared spectroscopic measurements of ageing indicators and changes in their chemical composition. The investigated binders included two paving grades, two polymer modified asphalt binders, and a highly modified asphalt binder. The bio-flux additive was produced from rapeseed methyl esters in an oxidation reaction in the presence of a metal catalyst and organic peroxide. The use of the bio-origin additive, in particular oil derivatives, was aimed at softening and better foaming of asphalt binders. This modification is possible due to the good mixability of vegetable oils with an asphalt binder, which gives a homogeneous product with reduced stiffness. The study involved the rolling thin film oven, short-term, and the pressure ageing vessel, long term, and ageing to induce oxidation on the evaluated asphalt binders. The addition of the bio-flux additive has significantly decreased the measured content of ketone compounds related to oxidation in both non-aged and aged asphalt binders, although this effect after ageing were far smaller in magnitude. Additionally, both ageing processes decreased significantly the absorbances in the ester spectral bands specific to the bio-flux additive. All mentioned effects were similar in magnitude in all tested asphalt binders.

4.
Materials (Basel) ; 15(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36556679

ABSTRACT

The present paper investigates the effects of simultaneous mechanical foaming using water and fluxing with a bio-derived agent on the properties of three distinct asphalt binders: 50/70 paving-grade bitumen, 45/80-55 polymer-modified bitumen, and 45/80-80 highly modified asphalt binder. The testing involved classical tests for assessing binder consistency (penetration at 25 °C, ring and ball softening point, Fraass breaking point, and dynamic viscosity) as well as performance tests (high and low Superpave critical temperatures and multiple stress creep recovery). The tests included assessment directly after asphalt binder foaming and were repeated after a 14-day period. It was shown that bitumen foaming had only short-term effects on the asphalt binders, which did not persist in the repeated tests after 14 days. The fluxing agent that was utilized caused significant changes in the consistency of all asphalt binders. The changes in the performance characteristics of the 50/70 and 45/80-55 binders were severe and amounted to a significant decrease in high-temperature performance of these binders. On the other hand, an improvement in all performance characteristics in the case of the 45/80-80 asphalt binder was observed as a result of the applied processes, particularly when measured 14 days after foaming. This study shows that the simultaneous use of foaming and the fluxing additive decreased the dynamic viscosity of the 45/80-80 binder, while improving its properties relating the pavement performance.

5.
Materials (Basel) ; 14(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442882

ABSTRACT

This article discusses the phenomenon of fresh and RAP binders miscibility and presents test results of bitumen film properties from specially prepared asphalt mixtures. The miscibility of a fresh binder and a RAP binder still has not been fully recognised. The aim of this study was to determine the homogeneity level of the bitumen film based on viscoelastic assessment. In addition, an attempt was made to assess the impact of fresh binder on the binders blending degree. The study included assessment of homogeneity of bitumen film comprising various types of bituminous binders. The assessment was conducted on the basis of tests in the dynamic shear rheometer regarding rheological properties of the binders recovered from specific layers of the bitumen film using a staged extraction method. A complex shear modulus as a function of temperature, an elastic recovery R and a non-recoverable creep compliance modulus JNR from MSCR test were determined. The conducted statistical analyses confirmed the significant impact of the type of fresh binder on the blending degree. Regressive dependencies have been set between the differences of the complex shear modulus of the binders subject to mixing and differences of the complex shear modulus of binders from the internal and external layer of the bitumen film comprised of those binders. It was found that there is no full blending of fresh hard bitumen-simulated binder from RAP, which results in non-homogeneity of the bitumen film.

SELECTION OF CITATIONS
SEARCH DETAIL
...