Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 12: 1209-1225, 2021.
Article in English | MEDLINE | ID: mdl-34858774

ABSTRACT

We calculate the conductance through strongly correlated T-shaped molecular or quantum dot systems under the influence of phonons. The system is modelled by the extended Anderson-Holstein Hamiltonian. The finite-U mean-field slave boson approach is used to study many-body effects. Phonons influence both interference and correlations. Depending on the dot unperturbed energy and the strength of electron-phonon interaction, the system is occupied by a different number of electrons that effectively interact with each other repulsively or attractively. This leads, together with the interference effects, to different spin or charge Fano-Kondo effects.

2.
Beilstein J Nanotechnol ; 11: 1873-1890, 2020.
Article in English | MEDLINE | ID: mdl-33425637

ABSTRACT

We study the magnetoconductance of small-bandgap carbon nanotube quantum dots in the presence of spin-orbit coupling in the strong-correlations regime. A finite-U slave-boson mean-field approach is used to study many-body effects. Different degeneracies are restored in a magnetic field and Kondo effects of different symmetries arise, including SU(3) effects of different types. Full spin-orbital degeneracy might be recovered at zero field and, correspondingly, the SU(4) Kondo effect sets in. We point out the possibility of the occurrence of electron-hole Kondo effects in slanting magnetic fields, which we predict to occur in magnetic fields with an orientation close to perpendicular. When the field approaches a transverse orientation a crossover from SU(2) or SU(3) symmetry into SU(4) is observed.

3.
Materials (Basel) ; 12(9)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31035498

ABSTRACT

A Tribaloy family of alloys (CoMoCrSi) are characterized by a substantial resistance to wear and corrosion within a wide range of temperatures. These properties are a direct result of their microstructure including the presence of Laves phase in varying proportions. Tribaloy T-800 exhibits the highest content of Laves phase of all other commercial Tribaloy alloys, which provides high hardness and wear resistance. On the other hand, a large content of the Laves phase brings about a high sensitivity to brittle fracture of this alloy. The main objective of this work was a development of the Tribaloy T-800 coatings on the Ni-based superalloy substrate (RENE 77), which employs a Laser Engineered Net Shaping (LENSTM) technique. Technological limitations in this process are susceptibility of T-800 to brittle fracture as well as significant thermal stresses due to rapid cooling, which is an inherent attribute of laser techniques. Therefore, in this work, a number of steps that optimized the LENSTM process and improved the metallurgical soundness of coatings are presented. Employing volume and local substrate pre-heating resulted in the formation of high quality coatings devoid of cracks and flaws.

4.
Sensors (Basel) ; 15(12): 31888-903, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26694412

ABSTRACT

Optical fibre carbon dioxide (CO2) sensors are reported in this article. The principle of operation of the sensors relies on the absorption of light transmitted through the fibre by a silica gel coating containing active dyes, including methyl red, thymol blue and phenol red. Stability of the sensor has been investigated for the first time for an absorption based CO2 optical fiber sensor. Influence of the silica gel coating thickness on the sensitivity and response time has also been studied. The impact of temperature and humidity on the sensor performance has been examined too. Response times of reported sensors are very short and reach 2-3 s, whereas the sensitivity of the sensor ranges from 3 to 10 for different coating thicknesses. Reported parameters make the sensor suitable for indoor and industrial use.

SELECTION OF CITATIONS
SEARCH DETAIL
...