Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0265247, 2022.
Article in English | MEDLINE | ID: mdl-35544536

ABSTRACT

This paper describes a detailed study of the spectral homogeneity of human platelets using Surface-enhanced Raman spectroscopy (SERS). We used a combined approach based on multivariate methods as principal component analysis and pair correlation algorithms to investigate platelets spectral properties. The correlation coefficients for each sample have been calculated, and the average coefficient of determination has been estimated. The high degree of spectral homogeneity inside one probe and between them has been revealed. The prospects of obtained results usage for pathologies based on platelet conformations during cardiovascular diseases have been demonstrated.


Subject(s)
Blood Platelets , Spectrum Analysis, Raman , Humans , Principal Component Analysis
2.
Opt Express ; 29(3): 4547-4558, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33771030

ABSTRACT

The article describes the results of finite-difference time-domain (FDTD) mathematical modeling of electric field strength distribution near the gold laser-induced periodic surface structures (LIPSS). Both theoretical and experimental results have been described for two fabricated morphologies: round «hill-like¼ and grating structures. The structures were fabricated by using a femtosecond Yb-fiber laser with a wavelength of λ=1032 nm, pulse duration τ=280 fs, and repetition rate υ=25 kHz. Morphological properties of the surfaces have been investigated by means of scanning electron microscopy (SEM). The plasmonic activity was analyzed by means of the surface-enhanced Raman spectroscopy (SERS) technique. FDTD-calculated electric field values were converted into the electromagnetic field enhancement coefficient and the theoretical SERS intensity. The prospects of the theoretical approach for LIPSS to evaluate optimal field amplification and light scattering parameters has been shown. The presented approach could be applied as a basis for performing the methods of controlled synthesis for LIPPS.

SELECTION OF CITATIONS
SEARCH DETAIL
...