Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399166

ABSTRACT

In vitro testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418). We intended to use hFOB 1.19 for the testing of Zn-based degradable metallic materials. However, the sensitivity of hFOB 1.19 to zinc ions has not yet been studied. Therefore, we compared the toxicity of zinc towards hFOB 1.19 under different conditions and compared it with that of the L929 mouse fibroblast cell line. We also tested the cytotoxicity of three types of Zn-based biomaterials in two types of media. The presence of G418 used as a selection reagent decreased the sensitivity of hFOB 1.19 to Zn2+. hFOB 1.19 cell line was more sensitive to Zn2+ at elevated (restrictive) temperatures. hFOB 1.19 cell line was less sensitive to Zn2+ than L929 cell line (both as ZnCl2 and extracts of alloys). Therefore, the appropriate cultivation conditions of hFOB 1.19 during biomaterial testing should be chosen with caution.

2.
Sci Rep ; 13(1): 18536, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898679

ABSTRACT

Lilial (also called lysmeral) is a fragrance ingredient presented in many everyday cosmetics and household products. The concentrations of lilial in the final products is rather low. Its maximum concentration in cosmetics was limited and recently, its use in cosmetics products was prohibited in the EU due to the classification as reproductive toxicant. Additionally, according to the European Chemicals Agency, it was under assessment as one of the potential endocrine disruptors, i.e. a substance that may alter the function of the endocrine system and, as a result, cause health problems. Its ability to act as an androgen receptor agonist and the estrogenic and androgenic activity of its metabolites, to the best of our knowledge, have not yet been tested. The aim of this work was to determine the intestinal absorption, cytotoxicity, nephrotoxicity, mutagenicity, activation of cellular stress-related signal pathways and, most importantly, to test the ability to disrupt the endocrine system of lilial and its Phase I metabolites. This was tested using set of in vitro assays including resazurin assay, the CHO/HPRT mutation assay, γH2AX biomarker-based genotoxicity assay, qPCR and in vitro reporter assays based on luminescence of luciferase for estrogen, androgen, NF-κB and NRF2 signalling pathway. It was determined that neither lilial nor its metabolites have a negative effect on cell viability in the concentration range from 1 nM to 100 µM. Using human cell lines HeLa9903 and MDA-kb2, it was verified that this substance did not have agonistic activity towards estrogen or androgen receptor, respectively. Lilial metabolites, generated by incubation with the rat liver S9 fraction, did not show the ability to bind to estrogen or androgen receptors. Neither lilial nor its metabolites showed a nephrotoxic effect on human renal tubular cells (RPTEC/TERT1 line) and at the same time they were unable to activate the NF-κB and NRF2 signalling pathway at a concentration of 50 µM (HEK 293/pGL4.32 or pGL4.37). Neither lilial nor its metabolites showed mutagenic activity in the HPRT gene mutation test in CHO-K1 cells, nor were they able to cause double-strand breaks in DNA (γH2AX biomarker) in CHO-K1 and HeLa cells. In our study, no negative effects of lilial or its in vitro metabolites were observed up to 100 µM using different in vitro tests.


Subject(s)
Hypoxanthine Phosphoribosyltransferase , NF-kappa B , Humans , Rats , Animals , HeLa Cells , HEK293 Cells , NF-E2-Related Factor 2 , Estrogens/toxicity , Estrogens/metabolism , Androgens , Biomarkers
3.
J Ethnopharmacol ; 312: 116484, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37044231

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia officinalis L., Sambucus nigra L., Matricaria chamomilla L., Agrimonia eupatoria L., Fragaria vesca L. and Malva sylvestris L. are plants that have a long tradition in European folk medicine. To this day, they are part of medicinal teas or creams that help with the healing of skin wounds and the treatment of respiratory or intestinal infections. However, so far these plants have not been investigated more deeply than in their direct antibacterial effect. AIM OF THE STUDY: Our research is focused on adjuvants that inhibit the mechanism of antibiotic resistance or modulate bacterial virulence. Based on a preliminary screening of 52 European herbs, which commonly appear as part of tea blends or poultice. Six of them were selected for their ability to revert the resistant phenotype of nosocomial bacterial strains. METHODS: Herbs selected for this study were obtained from commercially available sources. For the extraction of active compounds ethanol was used. Modulation of virulence was observed as an ability to inhibit bacterial cell-to-cell communication using two mutant sensor strains of Vibrio campbellii. Biofilm formation, and planktonic cell adhesion was measured using a static antibiofilm test. Ethidium bromide assay was used to checked the potential of inhibition bacterial efflux pumps. The antibacterial activities of the herbs were evaluated against resistant bacterial strains using macro dilution methods. RESULTS: Alcohol extracts had antibacterial properties mainly against Gram-positive bacteria. Of all of them, the highest antimicrobial activity demonstrated Malva sylvestris, killing both antibiotic resistant bacteria; Staphylococcus aureus with MIC of 0.8 g/L and Pseudomonas aeruginosa 0.7 g/L, respectively. Fragaria vesca extract (0.08 g/L) demonstrated strong synergism with colistin (4 mg/L) in modulating the resistant phenotype to colistin of Pseudomonas aeruginosa. Similarly, the extract of S. officinalis (0.21 g/L) reverted resistance to gentamicin (1 mg/L) in S. aureus. However, Sambucus nigra and Matricaria chamomilla seem to be a very promising source of bacterial efflux pump inhibitors. CONCLUSION: The extract of F. vesca was the most active. It was able to reduce biofilm formation probably due to the ability to decrease bacterial quorum sensing. On the other hand, the activity of S. nigra or M. chamomilla in reducing bacterial virulence may be explained by the ability to inhibit bacterial efflux systems. All these plants have potential as an adjuvant for the antibiotic treatment.


Subject(s)
Plants, Medicinal , Staphylococcus aureus , Plant Extracts/pharmacology , Virulence , Colistin/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacteria , Pseudomonas aeruginosa , Biofilms
4.
Toxins (Basel) ; 15(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-37104201

ABSTRACT

(1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.


Subject(s)
DNA Damage , Microscopy , Humans , Pilot Projects , Valinomycin/toxicity , Reproducibility of Results , HeLa Cells , Biomarkers/analysis
5.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363162

ABSTRACT

In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.

6.
J Agric Food Chem ; 70(38): 11833-11843, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36103343

ABSTRACT

Potatoes (Solanum tuberosum) are one of the most important crops worldwide. However, its production and nutrient content are endangered by both biotic and abiotic stresses. The main yield losses are caused by pest damage (e.g., Colorado potato beetle and aphids), virus disease (e.g., Potato leafroll virus and Potato viruses Y and X), or oomycete pathogens (like Phytophthora infestans), which also significantly affect the production of antinutrients and toxic metabolites of plants. Therefore, the use of genetic engineering could be an efficient tool, not harmful to the environment, and beneficial to the consumer. In this review, we focus on the main sources of problems in the field of potato production according to approved genetic modifications, their traditional solution and positive impact of gene transfection reducing economic losses, use of insecticides, and improving the nutritional properties of potatoes. We summarize all transgenic events that have been performed on potatoes and have been approved for cultivation and/or direct use or processing as feed or food.


Subject(s)
Insecticides , Phytophthora infestans , Solanum tuberosum , Animals , Food Safety , Phytophthora infestans/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics
7.
Biomed Pharmacother ; 149: 112806, 2022 May.
Article in English | MEDLINE | ID: mdl-35303568

ABSTRACT

Antibiotic resistance is currently a serious health problem. Since the discovery of new antibiotics no longer seems to be a sufficient tool in the fight against multidrug-resistant infections, adjuvant (combination) therapy is gaining in importance as well as reducing bacterial virulence. Silymarin is a complex of flavonoids and flavonolignans known for its broad spectrum of biological activities, including its ability to modulate drug resistance in cancer. This work aimed to test eleven, optically pure silymarin flavonolignans for their ability to reverse the multidrug resistance phenotype of Staphylococcus aureus and reduce its virulence. Silybin A, 2,3-dehydrosilybin B, and 2,3-dehydrosilybin AB completely reversed antibiotic resistance at concentrations of 20 µM or less. Both 2,3-dehydrosilybin B and AB decreased the antibiotic-induced gene expression of representative efflux pumps belonging to the major facilitator (MFS), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) families. 2,3-Dehydrosilybin B also inhibited ethidium bromide accumulation and efflux in a clinical isolate whose NorA and MdeA overproduction was induced by antibiotics. Most of the tested flavonolignans reduced cell-to-cell communication on a tetrahydrofuran-borate (autoinducer-2) basis, with isosilychristin leading the way followed by 2,3-dehydrosilybin A and AB, which halved communication at 10 µM. Anhydrosilychristin was the only compound that reduced communication based on acyl-homoserine lactone (autoinducer 1), with an IC50 of 4.8 µM. Except for isosilychristin and anhydrosilychristin, all of the flavonolignans inhibited S. aureus surface colonization, with 2,3-dehydrosilybin A being the most active (IC50 10.6 µM). In conclusion, the selected flavonolignans, particularly derivatives of 2,3-dehydrosilybin B, 2,3-dehydrosilybin AB, and silybin A are non-toxic modulators of S. aureus multidrug resistance and can decrease the virulence of the bacterium, which deserves further detailed research.


Subject(s)
Silymarin , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Humans , Silybin/pharmacology , Silymarin/chemistry , Silymarin/pharmacology , Staphylococcus aureus , Virulence
8.
Sci Rep ; 11(1): 6628, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758226

ABSTRACT

In vitro cytotoxicity testing is an indispensable part of the development of new biomaterials. However, the standard ISO 10993-5 enables variability in the testing conditions, which makes the results of the test incomparable. We studied the influence of media composition on the results of the cytotoxicity test. Solutions of ZnCl2 served as simulated extracts and we also used extracts of three types of Zn-based and Mg-based degradable metals. We incubated the cells with the solutions prepared in two types of media with two concentrations of serum (5 and 10%). We compared the toxic effect of the extracts on L929 murine fibroblast-derived cell line, which is recommended by ISO standard and on "osteoblast-like cells" U-2 OS. We also compared two methods of exposition: solutions were added either to a sub-confluent layer or to the cell suspension. We evaluated the metabolic activity of the cells using the resazurin test. We found out that in vitro cytotoxicity is dramatically influenced by the concentration of serum and by the type of the medium as well as by the type of exposition and type of cells. Therefore, when performing in vitro cytotoxicity testing of biomaterials, the authors should carefully specify the conditions of the test and comparison of different studies should be carried out with caution.


Subject(s)
Biocompatible Materials/pharmacology , Cell Survival/drug effects , Coordination Complexes/pharmacology , Alloys , Animals , Cells, Cultured , In Vitro Techniques , Materials Testing , Mice
9.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375355

ABSTRACT

Selaginella P. Beauv. is a group of vascular plants in the family Selaginellaceae Willk., found worldwide and numbering more than 700 species, with some used as foods and medicines. The aim of this paper was to compare methanolic (MeOH) and dichloromethane (DCM) extracts of eight Selaginella species on the basis of their composition and biological activities. Six of these Selaginella species are underinvestigated. Using ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis, we identified a total of 193 compounds among the tested Selaginella species, with flavonoids predominating. MeOH extracts recovered more constituents that were detected, including selaginellins, the occurrence of which is only typical for this plant genus. Of all the tested species, Selaginella apoda contained the highest number of identified selaginellins. The majority of the compounds were identified in S. apoda, the fewest compounds in Selaginella cupressina. All the tested species demonstrated antioxidant activity using oxygen radical absorption capacity (ORAC) assay, which showed that MeOH extracts had higher antioxidant capacity, with the half maximal effective concentration (EC50) ranging from 12 ± 1 (Selaginella myosuroides) to 124 ± 2 (Selaginella cupressina) mg/L. The antioxidant capacity was presumed to be correlated with the content of flavonoids, (neo)lignans, and selaginellins. Inhibition of acetylcholinesterase (AChE) was mostly discerned in DCM extracts and was only exhibited in S. myosuroides, S. cupressina, Selaginella biformis, and S. apoda extracts with the half maximal inhibitory concentration (IC50) in the range of 19 ± 3 to 62 ± 1 mg/L. Substantial cytotoxicity against cancer cell lines was demonstrated by the MeOH extract of S. apoda, where the ratio of the IC50 HEK (human embryonic kidney) to IC50 HepG2 (hepatocellular carcinoma) was 7.9 ± 0.2. MeOH extracts inhibited the production of nitrate oxide and cytokines in a dose-dependent manner. Notably, S. biformis halved the production of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 at the following concentrations: 105 ± 9, 11 ± 1, and 10 ± 1 mg/L, respectively. Our data confirmed that extracts from Selaginella species exhibited cytotoxicity against cancer cell lines and AChE inhibition. The activity observed in S. apoda was the most promising and is worth further exploration.

10.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: mdl-32796061

ABSTRACT

Retroviral envelope glycoprotein (Env) is essential for the specific recognition of the host cell and the initial phase of infection. As reported for human immunodeficiency virus (HIV), the recruitment of Env into a retroviral membrane envelope is mediated through its interaction with a Gag polyprotein precursor of structural proteins. This interaction, occurring between the matrix domain (MA) of Gag and the cytoplasmic tail (CT) of the transmembrane domain of Env, takes place at the host cell plasma membrane. To determine whether the MA of Mason-Pfizer monkey virus (M-PMV) also interacts directly with the CT of Env, we mimicked the in vivo conditions in an in vitro experiment by using a CT in its physiological trimeric conformation mediated by the trimerization motif of the GCN4 yeast transcription factor. The MA protein was used at the concentration shifting the equilibrium to its trimeric form. The direct interaction between MA and CT was confirmed by a pulldown assay. Through the combination of nuclear magnetic resonance (NMR) spectroscopy and protein cross-linking followed by mass spectrometry analysis, the residues involved in mutual interactions were determined. NMR has shown that the C terminus of the CT is bound to the C-terminal part of MA. In addition, protein cross-linking confirmed the close proximity of the N-terminal part of CT and the N terminus of MA, which is enabled in vivo by their location at the membrane. These results are in agreement with the previously determined orientation of MA on the membrane and support the already observed mechanisms of M-PMV virus-like particle transport and budding.IMPORTANCE By a combination of nuclear magnetic resonance (NMR) and mass spectroscopy of cross-linked peptides, we show that in contrast to human immunodeficiency virus type 1 (HIV-1), the C-terminal residues of the unstructured cytoplasmic tail of Mason-Pfizer monkey virus (M-PMV) Env interact with the matrix domain (MA). Based on biochemical data and molecular modeling, we propose that individual cytoplasmic tail (CT) monomers of a trimeric complex bind MA molecules belonging to different neighboring trimers, which may stabilize the MA orientation at the membrane by the formation of a membrane-bound net of interlinked Gag and CT trimers. This also corresponds with the concept that the membrane-bound MA of Gag recruits Env through interaction with the full-length CT, while CT truncation during maturation attenuates the interaction to facilitate uncoating. We propose a model suggesting different arrangements of MA-CT complexes between a D-type and C-type retroviruses with short and long CTs, respectively.


Subject(s)
Gene Products, env/chemistry , Gene Products, gag/chemistry , Mason-Pfizer monkey virus/chemistry , Gene Products, env/genetics , Gene Products, gag/genetics , Mason-Pfizer monkey virus/genetics , Protein Domains
11.
Viruses ; 10(10)2018 10 20.
Article in English | MEDLINE | ID: mdl-30347798

ABSTRACT

The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.


Subject(s)
Gene Products, env/metabolism , Mason-Pfizer monkey virus/physiology , Simian Acquired Immunodeficiency Syndrome/virology , Transport Vesicles/virology , Animals , Cell Membrane/metabolism , Cell Membrane/virology , Endosomes/metabolism , Endosomes/virology , Gene Products, env/genetics , Mason-Pfizer monkey virus/genetics , Protein Transport , Transport Vesicles/metabolism , Virus Assembly
12.
ACS Appl Mater Interfaces ; 9(44): 38842-38853, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29028298

ABSTRACT

Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 1013 cm-2), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiOx substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

13.
Materials (Basel) ; 10(9)2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28837101

ABSTRACT

Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young's modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.

14.
Mater Sci Eng C Mater Biol Appl ; 79: 550-562, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28629053

ABSTRACT

Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials.


Subject(s)
Alloys/chemistry , Biocompatible Materials , Corrosion , Iron , Lead , Materials Testing , Weight-Bearing
15.
Mater Sci Eng C Mater Biol Appl ; 76: 25-30, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482525

ABSTRACT

New materials with appropriate mechanical properties and an antibacterial effect are constantly being sought for orthopedic and dental applications. The aim of this study was to investigate newly developed TiSi alloys coated with titania sol-gel containing silver. Titanium alloys with 5 or 10wt% of silicon were prepared by vacuum arc remelting and dip-coated with titania sol containing either AgNO3 or Ag3PO4 in two concentrations. The size and distribution of the particles in the layer were evaluated, as well as layer compactness (SEM). The antibacterial effect (against E. coli and S. epidermidis) and cytotoxicity (towards L929 and U-2 OS cell lines) of these materials were then tested. Despite cracking of the coatings after firing, the coatings demonstrated very good antibacterial effects against both E. coli and S. epidermidis after 24h of interaction. None of the tested materials were toxic to both cell lines. Collectively, our results suggest that these materials are promising candidates for orthopedic applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Alloys , Coated Materials, Biocompatible , Escherichia coli , Phase Transition , Silicates , Silver , Titanium
16.
Mater Sci Eng C Mater Biol Appl ; 73: 736-742, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28183668

ABSTRACT

Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation.


Subject(s)
Alloys/chemistry , Magnesium/chemistry , Materials Testing/methods , Animals , Cell Death/drug effects , Cell Line , Corrosion , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydrogen/analysis , Ions , Mice , Sodium Chloride/pharmacology , Solutions
17.
Curr Pharm Biotechnol ; 18(14): 1167-1174, 2017.
Article in English | MEDLINE | ID: mdl-29484986

ABSTRACT

BACKGROUND: The aim of this work was to compare water and organic extracts, infusions and tinctures from flowers and leaves of Calendula officinalis in terms of their biological activity and composition. The purpose of work was investigation whether the leaves and stems are really the waste or they contain interesting substances which could be utilized. Antimicrobial, antifungal, antioxidant and anti-inflammatory activities were studied. Then, the ability to inhibit collagenase was studied as well. Cytotoxicity was tested for all the samples on mammalian cell lines. METHODS: To determine the composition of extracts, infusions and tinctures phytochemical analysis (the set of colour reactions for the detection of groups of biologically active compounds) was carried out and showed that samples from flowers and leaves contain the same groups of biologically active substances (proteins and amino acids, reducing sugars, flavonoids, saponins, phenolics, terpenoids, steroids, glycosides). The antimicrobial activity of tested samples was proved, where the most sensitive bacterium was Micrococcus luteus and the most sensitive yeast was Geotrichum candidum. RESULTS: The study of anti-collagenase activity has shown that the enzymatic reaction of collagenase was affected by all tested samples and their effect was concentration dependent. Cytotoxicity of water and methanol extracts at cell lines HEK 293T and HepG2 was observed. CONCLUSION: Cells HepG2 were more sensitive than cells HEK 293T. Using cell line RAW 264.7, antiinflammatory activity of all samples was observed. Tincture of leaves was the most effective.


Subject(s)
Calendula/chemistry , Flowers/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/toxicity , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/toxicity , Antioxidants/isolation & purification , Antioxidants/toxicity , Cell Line , Cell Survival/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Plant Extracts/toxicity
18.
Mater Sci Eng C Mater Biol Appl ; 69: 631-9, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27612756

ABSTRACT

Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.


Subject(s)
Elastic Modulus/drug effects , Iron/pharmacology , Lasers , Materials Testing/methods , Stainless Steel/pharmacology , Cell Line, Tumor , Cell Shape , Humans , Photoelectron Spectroscopy , Porosity , Surface Properties , Tensile Strength/drug effects
19.
Mater Sci Eng C Mater Biol Appl ; 68: 198-204, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27524013

ABSTRACT

Degradable zinc-based alloys with an appropriate corrosion rate are promising materials for the preparation of temporary orthopaedic implants. Previously, we prepared and characterised a novel Zn1.5Mg alloy. This paper is focused on the characterisation of this alloy after a surface pre-treatment, which should mimic processes occurring in vivo. The samples of the Zn1.5Mg alloy were immersed in a simulated body fluid (SBF) at 37°C for 14days in order to form a protective layer of corrosion products. Thereafter, these samples were used for the corrosion rate determination, an indirect in vitro cytotoxicity test, as well as for a direct contact test and were compared with the non-treated samples. The protective layer was characterized by SEM and its chemical composition was determined by EDS and XPS analysis. The corrosion rate was significantly decreased after the pre-incubation. The protective layer of corrosion products was rich in Ca and P. The pre-incubated samples exhibited increased cytocompatibility in the indirect test (metabolic activity of L929 cells was above 70%) and we also observed osteoblast-like cell growth directly on the samples during the contact tests. Thus, the pre-incubation in SBF leading to improved cytocompatibility could represent more appropriate model to in vivo testing.


Subject(s)
Absorbable Implants , Alloys , Magnesium , Materials Testing , Osteoblasts/metabolism , Zinc , Alloys/chemistry , Alloys/pharmacology , Animals , Body Fluids/chemistry , Cell Line , Cell Survival/drug effects , Corrosion , Magnesium/chemistry , Magnesium/pharmacology , Mice , Osteoblasts/cytology , Zinc/chemistry , Zinc/pharmacology
20.
Mater Sci Eng C Mater Biol Appl ; 58: 900-8, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478385

ABSTRACT

An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.


Subject(s)
Biocompatible Materials/chemistry , Iron/chemistry , Manganese/chemistry , Animals , Biocompatible Materials/toxicity , Cell Line , Cell Survival/drug effects , Compressive Strength , Corrosion , Iron/toxicity , Manganese/toxicity , Mice , Tensile Strength , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...