Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(6): e0301047, 2024.
Article in English | MEDLINE | ID: mdl-38870116

ABSTRACT

Currently, the primary factor indicating the necessity of an operation for an abdominal aortic aneurysm (AAA) is the diameter at its widest part. However, in practice, a large number of aneurysm ruptures occur before reaching a critical size. This means that the mechanics of aneurysm growth and remodeling have not been fully elucidated. This study presents a novel method for assessing the elastic properties of an aneurysm using an ultrasound technique based on tracking the oscillations of the vascular wall as well as the inner border of the thrombus. Twenty nine patients with AAA and eighteen healthy volunteers were considered. The study presents the stratification of a group of patients according to the elastic properties of the aneurysm, depending on the relative volume of intraluminal thrombus masses. Additionally, the neural network analysis of CT angiography images of these patients shows direct (r = 0.664271) correlation with thrombus volume according to ultrasound data, the reliability of the Spearman correlation is p = 0.000215. The use of finite element numerical analysis made it possible to reveal the mechanism of the negative impact on the AAA integrity of an asymmetrically located intraluminal thrombus. The aneurysm itself is considered as a complex structure consisting of a wall, intraluminal thrombus masses, and areas of calcification. When the thrombus occupies > 70% of the lumen of the aneurysm, the deformations of the outer and inner surfaces of the thrombus have different rates, leading to tensile stresses in the thrombus. This poses a risk of its detachment and subsequent thromboembolism or the rupture of the aneurysm wall. This study is the first to provide a mechanistic explanation for the effects of an asymmetrical intraluminal thrombus in an abdominal aortic aneurysm. The obtained results will help develop more accurate risk criteria for AAA rupture using non-invasive conventional diagnostic methods.


Subject(s)
Aortic Aneurysm, Abdominal , Thrombosis , Humans , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/complications , Thrombosis/diagnostic imaging , Thrombosis/pathology , Male , Female , Aged , Computed Tomography Angiography , Ultrasonography , Middle Aged , Models, Cardiovascular , Aged, 80 and over , Models, Theoretical , Finite Element Analysis
2.
Sci Total Environ ; 935: 173262, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768719

ABSTRACT

Growing concerns about pesticide residues in agriculture are pushing the scientific community to develop innovative and efficient methods for detecting these substances at low concentrations down to the molecular level. In this context, surface-enhanced Raman spectroscopy (SERS) is a powerful analytical method that has so far already undergone some validation for its effectiveness in pesticide detection. However, despite its great potential, SERS faces significant difficulties obtaining reproducible and accurate pesticide spectra, particularly for some of the most widely used pesticides, such as malathion, chlorpyrifos, and imidacloprid. Those inconsistencies can be attributed to several factors, such as interactions between pesticides and SERS substrates and the variety of substrates and solvents used. In addition, differences in the equipment used to obtain SERS spectra and the lack of standards for control experiments further complicate the reproducibility and reliability of SERS data. This review systematically discusses the problems mentioned above, including a comprehensive analysis of the challenges in precisely evaluating SERS spectra for pesticide detection. We not only point out the existing limitations of the method, which can be traced in previous review works, but also offer practical recommendations to improve the quality and comparability of SERS spectra, thereby expanding the potential applications of the method in such an essential field as pesticide detection.

3.
ACS Sens ; 9(4): 1809-1819, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38587867

ABSTRACT

While most of the research in graphene-based materials seeks high electroactive surface area and ion intercalation, here, we show an alternative electrochemical behavior that leverages graphene's potential in biosensing. We report a novel approach to fabricate graphene/polymer nanocomposites with near-record conductivity levels of 45 Ω sq-1 and enhanced biocompatibility. This is realized by laser processing of graphene oxide in a sandwich structure with a thin (100 µm) polyethylene terephthalate film on a textile substrate. Such hybrid materials exhibit high conductivity, low polarization, and stability. In addition, the nanocomposites are highly biocompatible, as evidenced by their low cytotoxicity and good skin adhesion. These results demonstrate the potential of graphene/polymer nanocomposites for smart clothing applications.


Subject(s)
Graphite , Lasers , Textiles , Graphite/chemistry , Humans , Electrochemical Techniques/methods , Nanocomposites/chemistry , Electric Conductivity , Polyethylene Terephthalates/chemistry , Animals , Biocompatible Materials/chemistry , Biosensing Techniques/methods
4.
ACS Appl Mater Interfaces ; 15(32): 38946-38955, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37466067

ABSTRACT

The concept of wearables is rapidly evolving from flexible polymer-based devices to textile electronics. The reason for this shift is the ability of textiles to ensure close contact with the skin, resulting in comfortable, lightweight, and compact "always with you" sensors. We are contributing to this polymer-textile transition by introducing a novel and simple way of laser intermixing of graphene with synthetic fabrics to create wearable sensing platforms. Our hybrid materials exhibit high electrical conductivity (87.6 ± 36.2 Ω/sq) due to the laser reduction of graphene oxide and simultaneous laser-induced graphene formation on the surface of textiles. Furthermore, the composite created between graphene and nylon ensures the durability of our materials against sonication and washing with detergents. Both of these factors are essential for real-life applications, but what is especially useful is that our free-form composites could be used as-fabricated without encapsulation, which is typically required for conventional laser-scribed materials. We demonstrate the exceptional versatility of our new hybrid textiles by successfully recording muscle activity, heartbeat, and voice. We also show a gesture sensor and an electrothermal heater embedded within a single commercial glove. Additionally, the use of these textiles could be extended to personal protection equipment and smart clothes. We achieve this by implementing self-sterilization with light and laser-induced functionalization with silver nanoparticles, which results in multifunctional antibacterial textiles. Moreover, incorporating silver into such fabrics enables their use as surface-enhanced Raman spectroscopy sensors, allowing for the direct analysis of drugs and sweat components on the clothing itself. Our research offers valuable insights into simple and scalable processes of textile-based electronics, opening up new possibilities for paradigms like the Internet of Medical Things.

5.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903801

ABSTRACT

Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.

6.
Adv Mater ; 34(43): e2206877, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36038983

ABSTRACT

Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq-1 ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID /IG  = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10-9  m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.

7.
Crit Rev Anal Chem ; : 1-25, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35435777

ABSTRACT

One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.

8.
Polymers (Basel) ; 13(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207113

ABSTRACT

Currently, several materials for the closure of the dura mater (DM) defects are known. However, the long-term results of their usage reveal a number of disadvantages. The use of antibiotics and chitosan is one of the major trends in solving the problems associated with infectious after-operational complications. This work compares the mechanical properties of samples of bacterial nanocellulose (BNC) impregnated with Novochizol™ and vancomycin with native BNC and preserved and native human DM. An assessment of the possibility of controling the mechanical properties of these materials by changing their thickness has been performed by statistical analysis methods. A total of 80 specimens of comparable samples were investigated. During the analysis, the results obtained, the factor of Novochizol™ addition has provided a statistically significant impact on the strength properties (Fisher Criteria p-value 0.00509 for stress and 0.00112 for deformation). Moreover, a stronger relationship between the thickness of the samples and their ultimate load was shown: R2=0.236 for BNC + Novochizol™ + vancomycin, compared to R2=0.0405 for native BNC. Using factor analysis, it was possible to show a significant effect of modified chitosan (Novochizol™) on the ultimate stress (p-value = 0.005).

9.
Biomedicines ; 9(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065958

ABSTRACT

BACKGROUND: Cerebral aneurysms (CA) are a widespread vascular disease affecting 50 per 1000 population. The study of the influence of histological, morphological and hemodynamic factors on the status of the aneurysm has been the subject of many works. However, an accurate and generally accepted relationship has not yet been identified. METHODS: In our work, the results of mechanical and spectroscopic measurements are considered. Total investigated 14 patients and 36 their samples of CA tissue. RESULTS: The excitation-emission matrix of each specimen was evaluated, after which the strength characteristics of the samples were investigated. CONCLUSIONS: It has been shown that there is a statistically significant difference in the size of the peaks of two components, which characterizes the status of the aneurysms. In addition, a linear regression model has been built that describes the correlation of the magnitude of the ultimate strain and stress with the magnitude of the peaks of one of the components. The results of this study will serve as a basis for the non-invasive determination of the strength characteristics of the cerebral tissue aneurysms and determination of their status.

10.
Analyst ; 144(10): 3297-3306, 2019 May 13.
Article in English | MEDLINE | ID: mdl-30968075

ABSTRACT

Graphene oxide (GO) films are deposited on flexible Kapton substrates and selectively modified to conductive reduced graphene oxide (rGO) electrodes using laser patterning. Based on this, we design, fabricate, and test a flexible sensor integrating laser-reduced GO with silver plasmonic nanostructures. The fabricated device results in dual transduction channels: for electrochemical and plasmonic nanostructure-based surface-enhanced Raman spectroscopy (SERS) detection. The spectroscopic analysis verifying the formation of rGO and the modification by silver nanostructures is performed by Raman, energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The morphological investigation is followed by optical and scanning electron microscopy imaging. In addition to pristine silver nanostructures, the Raman spectroscopy results show the formation of species such as Ag2O, Ag2CO3, and Ag2SOx. A dual-channel sensor device based on electrochemical and plasmonic detection is fabricated as a demonstration of our Ag-rGO flexible concept architecture. The dual-channel device performance is successfully demonstrated in the electrochemical and SERS detection of 4-nitrobenzenethiol (4-NBT) using the same device. Our results show that without Ag nanostructures the sensitivity in the electrochemical and optical channels is not sufficient to detect 4-NBT. The performance and stability of the silver modified device are also verified. This work demonstrates an inexpensive, highly efficient, and greener way that is compatible with solution-processing technology for the production of flexible GO-based electrochemical and SERS detection devices integrated with plasmonic nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...