Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 12: 1380564, 2024.
Article in English | MEDLINE | ID: mdl-38550379

ABSTRACT

Mouse models of diet-induced type 2 diabetes mellitus provide powerful tools for studying the structural and physiological changes that are related to the disease progression. In this study, diabetic-like glucose dysregulation was induced in mice by feeding them a western diet, and light and transmission electron microscopy were used to study the ultrastructural changes in the pancreatic acinar cells. Acinar necrosis and vacuolization of the cytoplasm were the most prominent features. Furthermore, we observed intracellular and extracellular accumulation of lipid compounds in the form of lipid droplets, structural enlargement of the cisternae of the rough endoplasmic reticulum (RER), and altered mitochondrial morphology, with mitochondria lacking the typical organization of the inner membrane. Last, autophagic structures, i.e., autophagosomes, autolysosomes, and residual bodies, were abundant within the acinar cells of western diet-fed mice, and the autolysosomes contained lipids and material of varying electron density. While diets inducing obesity and type 2 diabetes are clearly associated with structural changes and dysfunction of the endocrine pancreas, we here demonstrate the strong effect of dietary intervention on the structure of acinar cells in the exocrine part of the organ before detectable changes in plasma amylase activity, which may help us better understand the development of non-alcoholic fatty pancreas disease and its association with endo- and exocrine dysfunction.

2.
Sci Rep ; 13(1): 9643, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316704

ABSTRACT

Most subterranean habitats, especially caves, are considered extreme environments, mainly because of the limited and erratic food supply and constant darkness. In temperate regions, many climatic conditions, such as temperature and air humidity, are periodically less adverse or even more favourable in caves than the harsh seasonal weather on the surface. Accordingly, many animal species search for hibernacula in caves. These overwintering, non-specialized subterranean species (non-troglobionts) show various modes of dormancy and ongoing development. Since they do not feed, they all undergo periodic starvation, a preadaptation, which might evolve in permanent starvation hardiness, such as found in most specialized subterranean species (troglobionts). To this end, we performed a comparative analysis of energy-supplying compounds in eleven most common terrestrial non-troglobiont species during winter in central European caves. We found highly heterogeneous responses to starvation, which are rather consistent with the degree of energetic adaptation to the habitat than to overwintering mode. The consumption of energy-supplying compounds was strongly higher taxa-dependant; glycogen is the main energy store in gastropods, lipids in insects, and arachnids rely on both reserve compounds. We assume that permanent starvation hardiness in specialized subterranean species might evolved in many different ways as shown in this study.


Subject(s)
Arachnida , Gastropoda , Starvation , Animals , Acclimatization , Caves , Extreme Environments
3.
Cell Mol Neurobiol ; 43(6): 2909-2923, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36920627

ABSTRACT

Iron is known to accumulate in neurological disorders, so a careful balance of the iron concentration is essential for healthy brain functioning. An imbalance in iron homeostasis could arise due to the dysfunction of proteins involved in iron homeostasis. Here, we focus on ferritin-the primary iron storage protein of the brain. In this study, we aimed to improve a method to measure ferritin-bound iron in the human post-mortem brain, and to discern its distribution in particular cell types and brain regions. Though it is known that glial cells and neurons differ in their ferritin concentration, the change in the number and distribution of iron-filled ferritin cores between different cell types during autolysis has not been revealed yet. Here, we show the cellular and region-wide distribution of ferritin in the human brain using state-of-the-art analytical electron microscopy. We validated the concentration of iron-filled ferritin cores to the absolute iron concentration measured by quantitative MRI and inductively coupled plasma mass spectrometry. We show that ferritins lose iron from their cores with the progression of autolysis whereas the overall iron concentrations were unaffected. Although the highest concentration of ferritin was found in glial cells, as the total ferritin concentration increased in a patient, ferritin accumulated more in neurons than in glial cells. Summed up, our findings point out the unique behaviour of neurons in storing iron during autolysis and explain the differences between the absolute iron concentrations and iron-filled ferritin in a cell-type-dependent manner in the human brain. The rate of loss of the iron-filled ferritin cores during autolysis is higher in neurons than in glial cells.


Subject(s)
Ferritins , Iron , Humans , Iron/metabolism , Ferritins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Brain/metabolism
4.
PLoS One ; 17(6): e0268644, 2022.
Article in English | MEDLINE | ID: mdl-35657915

ABSTRACT

The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.


Subject(s)
Acinar Cells , Calcium , Acetylcholine/pharmacology , Animals , Calcium, Dietary , Ceruletide , Mice , Microscopy, Confocal , Pancreas
5.
Histochem Cell Biol ; 157(1): 107-118, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34738145

ABSTRACT

Amilenus aurantiacus overwinter in diapause, a natural starvation period, in hypogean habitats. The structure of spherites in the midgut diverticula (MD) and Malpighian tubules (MT) has been studied comparatively by light microscopy and TEM to detect eventual differences in mineral consumption in the beginning and at the end of the starvation period in these organs (MD and MT) associated with digestive processes. The chemical composition of spherites was examined by combining energy-dispersive X-ray spectroscopy (EDXS), electron energy-loss spectroscopy (EELS) and energy-filtered TEM (EFTEM). The structure of the spherites changed during overwintering in both organs. At the beginning of overwintering, the spherites were composed of densely packed concentric layers of electron-dense and electron-lucent material. In the middle and at the end of overwintering, the electron-lucent layers between the layers of material indicated the loss of some material. The chemical composition of the spherites changed only in the MD; at the beginning of overwintering, these contained Si, O, C and Fe, while later there was no more Fe. In contrast, spherites in the MT were composed of Si, O, C and Ca throughout overwintering. A less intensive exploitation of the MD spherites was probably due to complete cessation of digestive and other cell activity in this organ during the winter diapause; activity of the MT slowed, but continued removing the cell metabolites.


Subject(s)
Diapause , Diverticulum , Animals , Digestive System , Malpighian Tubules/ultrastructure , Seasons
6.
Zootaxa ; 4984(1): 3442, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34186697

ABSTRACT

Two closely related, syntopic species, Leiobunum rupestre and L. subalpinum, spend the day at apparently randomly distributed resting sites. In this preliminary research, we studied differences in their microclimatic preferences at a locality in the Pohorje Mts., Slovenia. We measured air temperature and relative humidity at individual resting sites, and found that L. subalpinum occupied a slightly wider air temperature-relative humidity ecospace as compared to L. rupestre. Individuals of L. rupestre rested at more humid sites than L. subalpinum. Regression analyses revealed that the presence of L. rupestre was most likely at resting sites with air temperature in the range of 1217°C and with relative air humidity of 98.1%. In contrast, the presence of L. subalpinum was most likely at resting sites with air temperature 23.1°C and relative air humidity in the range of 6585%. Nevertheless, microclimatic niches of both species overlapped almost completely, indicating that niche filtering may allow the coexistence of the two species.


Subject(s)
Arachnida/classification , Animals , Humidity , Slovenia , Temperature
7.
Protoplasma ; 258(5): 1145-1153, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33782782

ABSTRACT

In arachnids, the Malpighian tubules (MTs), coxal glands and stercoral pockets are capable of collecting and removing excreta from the body. The presence of the MTs among Opiliones was evidenced for the first time in Amilenus aurantiacus in 2015. Individuals undergo a winter diapause subterranean habitats. Here, we provided the morphological and cytological description of the MTs and asked whether their structure and ultrastructure change during the winter diapause. We studied the changes using light and transmission electron microscopy. The MTs consisted of the ureter and a pair of long, lateral blind-ended tubules, forming a long loop in the opisthosoma, and a coiled, terminal ball in the prosoma. The MTs were uniform, composed of a single-cell type, a monolayer of cuboidal epithelial cells, and the basal lamina. The cell ultrastructure was quite comparable to those in other arthropods, except for very long infoldings of the basal membrane protruding close to the nucleus. Except for spherite exploitation, no changes were observed in the ultrastructure of the MT epithelial cells during overwintering. We suggest that the analogous MTs in A. aurantiacus, and the nephron anatomies, along with a single-cell-type MT epithelium, might be of advantage in modelled studies of the nephron.


Subject(s)
Epithelial Cells , Malpighian Tubules , Animals , Ecosystem , Humans , Microscopy, Electron, Transmission , Seasons
8.
R Soc Open Sci ; 7(1): 191171, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32218947

ABSTRACT

Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of ß-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.

9.
Acta Neuropathol Commun ; 7(1): 144, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31481118

ABSTRACT

Electron microscopy (EM) provides the necessary resolution to visualize the finer structures of nervous tissue morphology, which is important to understand healthy and pathological conditions in the brain. However, for the interpretation of the micrographs the tissue preservation is crucial. The quality of the tissue structure is mostly influenced by the post mortem interval (PMI), the time of death until the preservation of the tissue. Therefore, the aim of this study was to optimize the preparation-procedure for the human frontal lobe to preserve the ultrastructure as well as possible despite the long PMIs. Combining chemical pre- and post-fixation with cryo-fixation and cryo-substitution ("hybrid freezing"), it was possible to improve the preservation of the neuronal profiles of human brain samples compared to the "standard" epoxy resin embedding method. In conclusion short PMIs are generally desirable but up to a PMI of 16 h the ultrastructure can be preserved on an acceptable level with a high contrast using the "hybrid freezing" protocol described here.


Subject(s)
Brain/ultrastructure , Histocytological Preparation Techniques , Microscopy, Electron/methods , Neurons/ultrastructure , Aged , Aged, 80 and over , Autopsy , Female , Humans , Male , Middle Aged , Tissue Preservation
10.
Sci Rep ; 9(1): 9121, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235705

ABSTRACT

The European cave spider, Meta menardi, is a representative of the troglophiles, i.e. non-strictly subterranean organisms. Our aim was to interpret the cytological results from an ecological perspective, and provide a synthesis of the hitherto knowledge about M. menardi into a theory of key features marking it a troglophile. We studied ultrastructural changes of the midgut epithelial cells in individuals spending winter under natural conditions in caves, using light microscopy and TEM. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During winter, gradual vacuolization of some digestive cells appeared, and some necrotic digestive cells and necrotic adipocytes appeared. This cytological information completes previous studies on M. menardi starved under controlled conditions in the laboratory. In experimental starvation and natural winter conditions, M. menardi gradually exploit reserve compounds from spherites, protein granules and through autophagy, and energy-supplying lipids and glycogen, as do many overwintering arthropods. We found no special cellular response to living in the habitat. Features that make it partly adapted to the subterranean habitat include starvation hardiness as a possible preadaptation, an extremely opportunistic diet, a partly reduced orb, tracking and capturing prey on bare walls and partly reduced tolerance to below-zero temperatures.


Subject(s)
Adaptation, Physiological , Ecosystem , Spiders/physiology , Acclimatization , Animals , Female , Male , Seasons
11.
Sci Rep ; 8(1): 13645, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206362

ABSTRACT

The European cave spider, Meta menardi, is among the most common troglophile species inhabiting the cave entrance zone in Europe, where prey is scarce in winter. Spiders feed only if prey is available; otherwise, they are subjected to long-term winter starvation. We carried out a four-month winter starvation of M. menardi under controlled conditions to analyze ultrastructural changes in the midgut diverticula epithelial cells at the beginning, in the middle and at the end of the starvation period. We used light microscopy, TEM and quantified reserve lipids and glycogen. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During starvation, gradual vacuolization of some digestive cells, and some necrotic digestive cells and adipocytes appeared. Autophagic structures, autophagosomes, autolysosomes and residual bodies were found in all three cell types. Spherites and the energy-reserve compounds were gradually exploited, until in some spherites only the membrane remained. Comparison between spring, autumn and winter starvation reveals that, during the growth period, M. menardi accumulate reserve compounds in spherites and protein granules, and energy-supplying lipids and glycogen, like many epigean, overwintering arthropods. In M. menardi, otherwise active all over the year, this is an adaptive response to the potential absence of prey in winter.


Subject(s)
Adaptation, Physiological , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Seasons , Spiders/metabolism , Starvation/metabolism , Animals
12.
Macromol Biosci ; 18(2)2018 02.
Article in English | MEDLINE | ID: mdl-29205840

ABSTRACT

A combination of hard sphere and high internal phase emulsion templating gives a platform for synthesizing hierarchically porous polymers with a unique topology exhibiting interconnected spherical features on multiple levels. Polymeric spheres are fused by thermal sintering to create a 3D monolithic structure while an emulsion with a high proportion of internal phase and monomers in the continuous phase is added to the voids of the previously constructed monolith. Following polymerization of the emulsion and dissolution of the templating structure, a down-replicating topology is created with a primary level of pores as a result of fused spheres of the 3D monolithic structure, a secondary level of pores resulting from the emulsion's internal phase, and a tertiary level of interconnecting channels. Thiol-ene chemistry with divinyladipate and pentaerythritol tetrakis(3-mercaptopropionate) is used to demonstrate the preparation of a crosslinked polyester with overall porosity close to 90%. Due to multilevel porosity, such materials are interesting for applications in bone tissue engineering, possibly simulating the native sponge like bone structure. Their potential to promote ossteointegration is tested using human bone derived osteoblasts. Material-cell interactions are evaluated and they reveal growth and proliferation of osteoblasts both on surface and in the bulk of the scaffold.


Subject(s)
Bone and Bones/physiology , Emulsions/chemistry , Osteoblasts/cytology , Polymethyl Methacrylate/chemistry , Tissue Engineering/methods , Elastic Modulus , Hardness , Humans , Porosity , Temperature , Tissue Scaffolds/chemistry
13.
Histochem Cell Biol ; 149(3): 245-260, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29164337

ABSTRACT

During the growth period, in surface habitats, spiders catch enough prey to feed normally. In contrast, in the cave entrance zone, prey may be relatively scarce. Meta menardi inhabits this cave section, resulting in temporary starvation. We studied structural changes in the midgut epithelial cells of M. menardi during a short-term and a medium-term controlled starvation to mimic the occasional starvation in caves, during spring and autumn. Digestive cells, secretory cells and adipocytes were examined before the experimental starvation, in the middle and at the end of starvation. We used light microscopy, transmission electron microscopy and specific histochemical methods for the detection of lipids, polysaccharides and proteins. Detection of lysosomes, autolysosomes and apoptosis was also carried out. The general structures of the cells did not change during the experimental starvation in either season, while some specific differences in the ultrastructure were observed. In both sexes, in both seasons, the amounts of lipids, glycogen and proteins decreased during starvation. Larger amounts of lipids were found in autumn, while there were no significant differences in the amounts of glycogen and proteins. In both sexes, in both seasons, autophagy and apoptosis intensified with starvation in progress, but more intensively in females. Thus, autumn individuals, in contrast to spring ones, compile energy-supplying stores to confront the subsequent winter deficiency of prey in caves, while the cellular ultrastructures undergo the same starvation-dependant changes at any time during the growth period.


Subject(s)
Epithelial Cells/chemistry , Epithelial Cells/metabolism , Seasons , Spiders/cytology , Animals , Female , Lipids/analysis , Male , Polysaccharides/analysis , Proteins/analysis
14.
Protoplasma ; 254(6): 2189-2199, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28401359

ABSTRACT

The herald moths, Scoliopteryx libatrix, overwinter in hypogean habitats. The ultrastructure of their fat body (FB) cells and Malpighian tubule (MT) epithelial cells was studied by light microscopy and transmission electron microscopy, and essential biometric and biochemical measurements were performed. The FB was composed of adipocytes and sparse urocytes. The ultrastructure of both cells did not change considerably during this natural starvation period, except for rough endoplasmic reticulum (rER) which became more abundant in March females. In the cells, the reserve material consisted of numerous lipid droplets, glycogen rosettes, and protein granula. During overwintering, the lipid droplets diminished, and protein granula became laminated. The MTs consisted of a monolayer epithelium and individual muscle cells. The epithelial cells were attached to the basal lamina by numerous hemidesmosomes. The apical plasma membrane was differentiated into numerous microvilli, many of them containing mitochondria. Nuclei were surrounded by an abundant rER. There were numerous spherites in the perinuclear part of the cells. The basal plasma membrane formed infoldings with mitochondria in between. Nuclei were located either in the basal or in the central part of the cells. During overwintering, spherites were gradually exploited, and autophagic structures appeared: autophagosomes, autolysosomes, and residual bodies. There were no statistical differences between the sexes in any measured biometric and biochemical variables in the same time frames. The energy-supplying lipids and glycogen, and spherite stores were gradually spent during overwintering. In March, the augmented rER signified the intensification of synthetic processes prior to the epigean ecophase.


Subject(s)
Fat Body/ultrastructure , Malpighian Tubules/ultrastructure , Moths/ultrastructure , Animals , Fat Body/physiology , Female , Glycogen/metabolism , Lipid Metabolism , Male , Malpighian Tubules/physiology , Moths/physiology , Seasons , Torpor
15.
PLoS One ; 11(7): e0158598, 2016.
Article in English | MEDLINE | ID: mdl-27379687

ABSTRACT

During winter, cave cricket larvae undergo dormancy in subterranean habitats; this dormancy is termed diapause in second year Troglophilus cavicola larvae because they mature during this time, and termed quiescence in T. neglectus, because they mature after dormancy. Here we used electron microscopy to analyze ultrastructural changes in the epithelial cells in the Malpighian tubules (MTs) of T. cavicola during diapause, in order to compare them with previous findings on T. neglectus. Moreover, the autophagosomes were studied with immunofluorescence microscopy in both species. Although the basic ultrastructure of the cells was similar, specific differences appeared during overwintering. During this natural starvation period, the nucleus, rER, the Golgi apparatus and mitochondria did not show structural changes, and the spherites were exploited. The abundances of autophagic structures in both species increased during overwintering. At the beginning of overwintering, in both species and sexes, the rates of cells with autophagic structures (phagophores, autophagosomes, autolysosomes and residual bodies) were low, while their rates increased gradually towards the end of overwintering. Between sexes, in T. cavicola significant differences were found in the autophagosome abundances in the middle and at the end, and in T. neglectus at the end of overwintering. Females showed higher rates of autophagic cells than males, and these were more abundant in T. cavicola. Thus, autophagic processes in the MT epithelial cells induced by starvation are mostly parallel in diapausing T. cavicola and quiescent T. neglectus, but more intensive in diapausing females.


Subject(s)
Caves , Ecosystem , Gryllidae/physiology , Malpighian Tubules/physiology , Seasons , Animals , Autophagosomes/ultrastructure , Autophagy/physiology , Diapause, Insect/physiology , Epithelial Cells/physiology , Epithelial Cells/ultrastructure , Female , Gryllidae/classification , Gryllidae/cytology , Male , Malpighian Tubules/cytology , Malpighian Tubules/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Species Specificity
16.
Protoplasma ; 253(2): 457-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25956501

ABSTRACT

The cave cricket Troglophilus neglectus regularly overwinters for 4-5 months in hypogean habitats. Winter dormancy is a natural starvation period, providing the opportunity to study autophagy under natural conditions. We aimed to evaluate the autophagic activity in adipocytes and urocytes of the fat body in three time frames: directly before overwintering, in the middle of dormancy, and at its end. For this purpose, we sampled individuals in caves. The cell ultrastructure was studied by transmission electron microscopy (TEM) and the abundance of autophagosomes by immunofluorescence microscopy (IFM), applying the widely used, specific immunolabeling marker microtubule-associated protein 1 light chain 3 (LC3). Before overwintering, TEM revealed scarce autophagosomes and residual bodies in the adipocytes and none in the urocytes. Congruently, IFM showed a very limited or no reaction. In the middle and at the end of overwintering, in both cell types, phagophores, autophagosomes, autolysosomes, and residual bodies were identified by TEM, while LC3 immunolabeling for detecting autophagosomes showed a conspicuous positive reaction. Both methods revealed that there were no significant differences between the sexes in any time frame. Minimal autophagic activity was detected before the winter dormancy, and it gradually intensified till the end of overwintering, probably because reserve proteins in protein granula are not composed of all the required amino acids. We conclude that in T. neglectus, autophagy is a substantial response to starvation and supports homeostatic processes during winter dormancy by supplying cells with nutrients.


Subject(s)
Autophagy , Fat Body/ultrastructure , Gryllidae/ultrastructure , Adipocytes/physiology , Adipocytes/ultrastructure , Animals , Autophagosomes/ultrastructure , Female , Male , Seasons
17.
Arthropod Struct Dev ; 44(2): 131-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546311

ABSTRACT

The harvestmen Amilenus aurantiacus overwinter in diapause in hypogean habitats. The midgut diverticula have been studied microscopically (light microscopy, TEM) and biochemically (energy-storing compounds: lipids and glycogen) to analyze changes during this programmed starvation period. Throughout the investigated period, the epithelium of the midgut diverticula is composed of secretory cells, digestive cells and adipocytes. Additionally, after the middle of overwintering, the excretory cells appear, and two assemblages of secretory cells are present: the SC1 secretory cells are characterized by electron-dense cytoplasm with numerous protein granules, and the SC2 cells by an electron-lucent cytoplasm with fewer protein granules. The autophagic activity is observed from the middle of overwintering, indicating its vital role in providing nutrients during this non-feeding period. Lipids and glycogen are present in the midgut diverticula cells, except in the excretory cells. Measurements of the lipid droplet diameters and the lipid quantities yielded quite comparable information on their consumption. Lipids are gradually spent in both sexes, more rapidly in females, owing to ripening of the ovaries. Glycogen rates decrease towards the middle, and increase just before the end of overwintering, indicating that individuals are preparing for the epigean active ecophase.


Subject(s)
Arachnida/ultrastructure , Diapause, Insect , Seasons , Animals , Arachnida/cytology , Digestive System/cytology , Digestive System/ultrastructure , Female , Lipid Metabolism , Male
18.
Wien Klin Wochenschr ; 126(19-20): 626-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25256178

ABSTRACT

Apoptosis, autophagy and necrosis are three distinct functional types of the mammalian cell death network. All of them are characterized by a number of cell's morphological changes. The inappropriate induction of cell death is involved in the pathogenesis of a number of diseases.Pathogenesis of inflammatory bowel diseases (ulcerative colitis, Crohn's disease) includes an abnormal immunological response to disturbed intestinal microflora. One of the most important reason in pathogenesis of chronic inflammatory disease and subsequent multiple organ pathology is a barrier function of the gut, regulating cellular viability. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD).This review focuses on the regulation of biological pathways in development and homeostasis in IBD. Better understanding of the physiological functions of biological pathways and their influence on inflammation, immunity, and barrier function will simplify our expertice of homeostasis in the gastrointestinal tract and in upgrading diagnosis and treatment.


Subject(s)
Bacteria/immunology , Cytokines/immunology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Signal Transduction/immunology , Animals , Humans , Models, Immunological
19.
Arthropod Struct Dev ; 43(5): 493-500, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929120

ABSTRACT

Juvenile harvestmen Gyas annulatus overwinter in dormancy in hypogean habitats for 4-5 months. The ultrastructure of the autophagic structures in their midgut epithelium cells was studied by light microscopy, transmission electron microscopy (TEM) and immunofluorescence microscopy (IFM) during this non-feeding period. Before overwintering (November), autophagic structures were scarce. In the middle (January) and at the end of overwintering (March), phagophores, autophagosomes and autolysosomes were present in the cytoplasm of both the secretory and the digestive midgut epithelium cells, gradually increasing their abundance during overwintering. In addition, vacuolization of the cytoplasm intensified. Both processes are induced by starvation. Autophagic structures and cytoplasm vacuolization enable the reuse of the cell's own components required for the maintenance of vital processes during dormancy. While TEM is a much more convenient method for recognition of the autophagic structure types and their ultrastructure, IFM enables exact counting of these structures.


Subject(s)
Arachnida/physiology , Autophagy , Animals , Arachnida/ultrastructure , Caves , Digestive System/ultrastructure , Exocrine Glands/physiology , Exocrine Glands/ultrastructure , Food Deprivation , Lysosomes/metabolism , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Seasons
20.
Gen Comp Endocrinol ; 185: 67-79, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23399968

ABSTRACT

In this work we have compared the ultrastructural characteristics of major pancreatic endocrine cells, pituitary melanotrophs and adrenal chromaffin cells in the normal mouse strain (wild type, WT) and mice with a known secretory deficit, the Rab3a knockout strain (Rab3a KO). For this purpose, pancreata, pituitary glands and adrenal glands from the Rab3a KO and from the WT mice were analysed, using conventional transmission electron microscopy (TEM). In order to assess the significance of the presence of Rab3a proteins in the relevant cells, we focused primarily on their secretory vesicle morphology and distribution. Our results showed a comparable general morphology in Rab3a KO and WT in all assessed endocrine cell types. In all studied cell types, the distribution of secretory granules along the plasma membrane (number of docked and almost-docked vesicles) was comparable between Rab3a KO and WT mice. Specific differences were found in the diameters of their secretory vesicles, diameters of their electron-dense cores and the presence of autophagic structures in the cells of Rab3A KO mice only. Occasionally, individual electron-dense round vesicles were present inside autophagosome-like structures; these were possibly secretory vesicles or their remnants. The differences found in the diameters of the secretory vesicles confirm the key role of Rab3a proteins in controlling the balance between secretory vesicle biogenesis and degradation, and suggest that the ablation of this protein probably changes the nature of the reservoir of secretory vesicles available for regulated exocytosis.


Subject(s)
Chromaffin Cells/ultrastructure , Melanotrophs/ultrastructure , Pancreas/ultrastructure , Secretory Vesicles/ultrastructure , rab3A GTP-Binding Protein/deficiency , Adrenal Glands/ultrastructure , Animals , Exocytosis , Male , Mice , Mice, Knockout , Pituitary Gland/ultrastructure , Secretory Vesicles/physiology , rab3A GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...