Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(17): 10510-10517, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30058803

ABSTRACT

Metrological traceability to common references supports the comparability of chemical measurement results produced by different analysts, at various times, and at separate places. Ideally, these references are realizations of base units of the International System of Units (SI). ISO/IEC 17025 (Clause 6.5) states that traceability of measurement results is a necessary attribute of analytical laboratory competence, and as such, has become compulsory in many industries, especially clinical diagnostics and healthcare. Historically, claims of traceability for organic chemical measurements have relied on calibration chains anchored on unique reference materials with linkage to the SI that is tenuous at best. A first-of-its-kind National Institute of Standards and Technology (NIST) reference material, ultrapure and extensively characterized PS1 Benzoic Acid Primary Standard for quantitative NMR (qNMR), serves as a definitive, primary reference (calibrant) that assuredly links the qNMR spectroscopy technique to SI units. As qNMR itself is a favorable method for accurate, direct characterization of chemical reference materials, PS1 is a standard for developing other traceable standards and is intended to establish traceability for the measurement of thousands of organic chemical species. NIST PS1 will play a critical role in directly promoting accuracy and worldwide comparability of measurement results produced by the chemical measurement community, supporting the soundness of clinical diagnostics, food safety and labeling, forensic investigation, drug development, biomedical research, and chemical manufacturing. Confidence in this link to the SI was established through (i) unambiguous identification of chemical structure; (ii) determinations of isotopic composition and molecular weight; (iii) evaluation of the respective molecular amount by multiple primary measurement procedures, including qNMR and coulometry; and (iv) rigorous evaluation of measurement uncertainty using state-of-the-art statistical methods and measurement models.

2.
Anal Bioanal Chem ; 405(13): 4437-41, 2013 May.
Article in English | MEDLINE | ID: mdl-23552970

ABSTRACT

The National Institute of Standards and Technology administers quality assurance programs devoted to improving measurements of nutrients and related metabolites in foods, dietary supplements, and serum and plasma samples. These programs have been developed in collaboration with the National Institutes of Health to assist measurement communities in their efforts to achieve accurate results that are comparable among different laboratories and over time. Targeted analytes include micronutrients, botanical markers, nutritional elements, contaminants, fatty acids, and vitamin D metabolites.


Subject(s)
Dietary Supplements/analysis , Fatty Acids/blood , Food Analysis/standards , Micronutrients/blood , Dietary Supplements/standards , Fatty Acids/standards , Food Analysis/methods , Humans , Micronutrients/standards , National Institutes of Health (U.S.) , Quality Control , Reproducibility of Results , Sensitivity and Specificity , United States
3.
Anal Bioanal Chem ; 396(4): 1501-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20012028

ABSTRACT

An international intercomparison involving eight national metrology institutes (NMIs) was conducted to establish their current measurement capabilities for determining five selected congeners from the brominated flame retardant classes polybrominated diphenyl ethers and polybrominated biphenyls. A candidate reference material consisting of polypropylene fortified with technical mixtures of penta-, octa- and decabromo diphenyl ether and decabromo biphenyl, which was thoroughly assessed for material homogeneity and stability, was used as study material. The analytical procedures applied by the participants differed with regard to sample pre-treatment, extraction, clean-up, employed calibrants and type of calibration procedure as well as regarding analytical methods used for separation, identification and quantification of the flame retardant congeners (gas chromatography coupled to an electron capture detector (GC-ECD), gas chromatography-mass spectrometry in the electron ionisation mode (GC-EI-MS), gas chromatography-mass spectrometry in the electron capture negative ionisation mode (GC-ECNI-MS), and liquid chromatography-inductive coupled plasma-mass spectrometry (LC-ICP-MS)). The laboratory means agreed well with relative standard deviations of the mean of means of 1.9%, 4.8%, 5.5% and 5.4% for brominated diphenyl ether (BDE) 47, 183 and 209 and for the brominated biphenyl (BB) congener 209, respectively. For BDE 206, a relative standard deviation of 28.5% was obtained. For all five congeners, within-laboratory relative standard deviations of six measurements obtained under intermediate precision conditions were between 1% and 10%, and reported expanded measurements uncertainties typically ranged from 4% to 10% (8% to 14% for BDE 206). Furthermore, the results are in good agreement with those obtained in the characterization exercise for determining certified values for the flame retardant congeners in the same material. The results demonstrate the state-of-the-art measurement capabilities of NMIs for quantifying representative BDE congeners and BB 209 in a polymer. The outcome of this intercomparison (pilot study) in conjunction with possible improvements for employing exclusively calibrants with thoroughly assessed purity suggests that a key comparison aiming at underpinning calibration and measurement capability (CMC) claims of NMIs can be conducted.

4.
Environ Sci Technol ; 36(19): 4065-73, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12380076

ABSTRACT

Reactions of bisulfide and polysulfides with alachlor, propachlor, and metolachlor were examined in aqueous solution to investigate the role reduced sulfur species could play in effecting abiotic transformations of chloroacetanilide herbicides. Experiments at 25 degrees C demonstrated that reactions were approximately first-order in HS- concentration and revealed that polysulfides are considerably more reactive than HS-. delta H not equal to values for reactions of the three chloroacetanilides with HS- are statistically indistinguishable at the 95% confidence level, as are delta S not equal to values, despite significant differences in second-order rate constants (kHS-). Transformation products were characterized by GC/MS (in some cases following methylation) and were found to be consistent with substitution of chlorine by the sulfur nucleophile. Products containing multiple sulfur atoms were observed for the reactions of chloroacetanilides with polysulfides, while products resulting from reaction with HS- only possessed a single sulfur atom. When second-order rate constants at 25 degrees C are multiplied by HS- and polysulfide concentrations reported in salt marsh porewaters, predicted half-lives range from minutes to hours. HS- and especially polysulfides could thus exert a substantial influence on the fate of chloroacetanilide herbicides in aquatic environments. Oxidation of the resulting sulfur-substituted products could generate ethane sulfonic acid derivatives, previously reported as prevalent chloroacetanilide degradates.


Subject(s)
Acetamides/chemistry , Acetanilides/chemistry , Herbicides/chemistry , Sulfides/chemistry , Environmental Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Oxidation-Reduction , Temperature
5.
Environ Sci Technol ; 36(9): 2008-18, 2002 May 01.
Article in English | MEDLINE | ID: mdl-12026986

ABSTRACT

Reactions of bisulfide and polysulfides with chloroazines (important constituents of agrochemicals and textile dyes) were examined in aqueous solution at 25 degrees C. For atrazine, rates are first-order in polysulfide concentration, and polysulfide dianions are the principal reactive nucleophiles; no measurable reaction occurs with HS-. Second-order rate constants for reactions of an array of chloroazines with polysulfides are several orders of magnitude greater than for reactions with HS-. Transformation products indicate the substitution of halogen(s) by sulfur. Ring aza nitrogens substantially enhance reactivity through a combination of inductive and mesomeric effects, and electron-withdrawing or electron-donating substituents markedly enhance or diminish reactivity, respectively. The overall second-order nature of the reaction, the products observed, and reactivity trends are all consistent with a nucleophilic aromatic substitution (S(N)Ar) mechanism. Rate constants for reactions with HS- and Sn2- (n = 2-5) correlate only weakly with lowest unoccupied molecular orbital energies, suggesting that the electrophilicity of a chloroazine is not the sole determinant of its reactivity. When second-order rate constants are extrapolated to HS- and Sn2- concentrations reported in salt marsh pore waters, half-lives of minutes to years are obtained. Polysulfides in particular could play an important role in effecting abiotic transformations of chloroazines in hypoxic marine waters.


Subject(s)
Azo Compounds/chemistry , Sulfides/chemistry , Triazines/chemistry , Chlorine Compounds/chemistry , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...