Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(19): 9576-9582, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38682293

ABSTRACT

Aquaporin-4 (AQP4) facilitates water transport across astrocytic membranes in the brain, forming highly structured nanometric arrays. AQP4 has a central role in regulating cerebrospinal fluid (CSF) circulation and facilitating the clearance of solutes from the extracellular space of the brain. Adrenergic signaling has been shown to modulate the volume of the extracellular space of the brain via AQP4 localized at the end-feet of astrocytes, but the mechanisms by which AQP4 regulates CSF inflow and outflow in the brain remain elusive. Using advanced imaging techniques, including super-resolution microscopy and single-molecule tracking, we investigated the hypothesis that ß-adrenergic receptor activation induces cellular changes that regulate AQP4 array size and mobility, thus influencing water transport in the brain. We report that the ß-adrenergic agonist, isoproterenol hydrochloride, decreases AQP4 array size and enhances its membrane mobility, while hyperosmotic conditions induce the formation of larger, less mobile arrays. These findings reveal that AQP4 arrays are dynamic structures, responsive to adrenergic signals and osmotic changes, highlighting a novel regulatory mechanism of water transport in the brain. Our results provide insights into the molecular control of CSF circulation and extracellular brain space volume, laying the groundwork for understanding the relationship between astrocyte water transport, sleep physiology, and neurodegeneration.


Subject(s)
Aquaporin 4 , Astrocytes , Isoproterenol , Single Molecule Imaging , Aquaporin 4/metabolism , Astrocytes/metabolism , Astrocytes/cytology , Animals , Isoproterenol/pharmacology , Mice , Water/chemistry , Water/metabolism , Cells, Cultured , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Agonists/pharmacology , Brain/metabolism
2.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354703

ABSTRACT

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/metabolism , CD28 Antigens , Receptors, Immunologic
3.
Curr Opin Immunol ; 82: 102309, 2023 06.
Article in English | MEDLINE | ID: mdl-37011462

ABSTRACT

T cells recognize pathogenic antigens via the T-cell antigen receptor (TCR). This protein complex binds to antigen fragments on the surface of antigen-presenting cells. To understand how cellular activation can ensue rapidly from molecular recognition, the localization and distribution of the TCR on the surface of the resting T cell are of particular importance. Conflicting results regarding TCR distribution have emerged from recent studies using a range of imaging techniques, including total internal reflection and single-molecule localization microscopy modalities. Here, we review the differing results and the potential biases inherent in differing imaging approaches. In addition, we review studies showing the impact of differing imaging surfaces on T-cell activation.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/metabolism , Antigens , Lymphocyte Activation , Antigen-Presenting Cells
4.
Nat Commun ; 14(1): 1611, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959206

ABSTRACT

T cells use finger-like protrusions called 'microvilli' to interrogate their targets, but why they do so is unknown. To form contacts, T cells must overcome the highly charged, barrier-like layer of large molecules forming a target cell's glycocalyx. Here, T cells are observed to use microvilli to breach a model glycocalyx barrier, forming numerous small (<0.5 µm diameter) contacts each of which is stabilized by the small adhesive protein CD2 expressed by the T cell, and excludes large proteins including CD45, allowing sensitive, antigen dependent TCR signaling. In the absence of the glycocalyx or when microvillar contact-size is increased by enhancing CD2 expression, strong signaling occurs that is no longer antigen dependent. Our observations suggest that, modulated by the opposing effects of the target cell glycocalyx and small adhesive proteins, the use of microvilli equips T cells with the ability to effect discriminatory receptor signaling.


Subject(s)
Antigens , T-Lymphocytes , Antigens/metabolism , Signal Transduction , Microvilli/metabolism , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation
5.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34526387

ABSTRACT

T cell activation is initiated by T cell receptor (TCR) phosphorylation. This requires the local depletion of large receptor-type phosphatases from "close contacts" formed when T cells interact with surfaces presenting agonistic TCR ligands, but exactly how the ligands potentiate signaling is unclear. It has been proposed that TCR ligands could enhance receptor phosphorylation and signaling just by holding TCRs in phosphatase-depleted close contacts, but this has not been directly tested. We devised simple methods to move the TCR in and out of close contacts formed by T cells interacting with supported lipid bilayers (SLBs) and to slow the receptor's diffusion in the contacts, using a series of anti-CD3ε Fab- and ligand-based adducts of the receptor. TCRs engaging a Fab extended with the large extracellular region of CD45 were excluded from contacts and produced no signaling. Conversely, allowing the extended Fab to become tethered to the SLB trapped the TCR in the close contacts, leading to very strong signaling. Importantly, attaching untethered anti-CD3ε Fab or peptide/MHC ligands, each of which were largely inactive in solution but both of which reduced TCR diffusion in close contacts approximately fivefold, also initiated signaling during cell/SLB contact. Our findings indicate that holding TCRs in close contacts or simply slowing their diffusion in phosphatase-depleted regions of the cell surface suffices to initiate signaling, effects we could reproduce in single-particle stochastic simulations. Our study shows that the TCR is preconfigured for signaling in a way that allows it to be triggered by ligands acting simply as receptor "traps."


Subject(s)
Cell Communication , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Humans , Ligands , Phosphorylation , T-Lymphocytes/cytology
6.
Biophys J ; 120(1): 35-45, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33248128

ABSTRACT

Much of what we know about the early stages of T cell activation has been obtained from studies of T cells interacting with glass-supported lipid bilayers that favor imaging but are orders of magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing "soft bilayers" with physiological levels of mechanical resistance (Young's modulus of 4 kPa). Comparisons of T cell behavior on soft and glass-supported bilayers revealed that whereas late stages of T cell activation are thought to be substrate-stiffness dependent, early calcium signaling was unaffected by substrate rigidity, implying that early steps in T cell receptor triggering are not mechanosensitive. The exclusion of large receptor-type phosphatases was observed on the soft bilayers, however, even though it is yet to be demonstrated at authentic cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.


Subject(s)
Lipid Bilayers , T-Lymphocytes , Cell Communication , Dimethylpolysiloxanes , Elastic Modulus
7.
Biophys J ; 118(6): 1261-1269, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32075748

ABSTRACT

Cell-cell contacts often underpin signaling between cells. For immunology, the binding of a T cell receptor to an antigen-presenting pMHC initiates downstream signaling and an immune response. Although this contact is mediated by proteins on both cells creating interfaces with gap sizes typically around 14 nm, many, often contradictory observations have been made regarding the influence of the contact on parameters such as the binding kinetics, spatial distribution, and diffusion of signaling proteins within the contact. Understanding the basic physical constraints on probes inside this crowded environment will help inform studies on binding kinetics and dynamics of signaling of relevant proteins in the synapse. By tracking quantum dots of different dimensions for extended periods of time, we have shown that it is possible to obtain the probability of a molecule entering the contact, the change in its diffusion upon entry, and the impact of spatial heterogeneity of adhesion protein density in the contact. By analyzing the contacts formed by a T cell interacting with adhesion proteins anchored to a supported lipid bilayer, we find that probes are excluded from contact entry in a size-dependent manner for gap-to-probe differences of 4.1 nm. We also observed probes being trapped inside the contact and a decrease in diffusion of up to 85% in dense adhesion protein contacts. This approach provides new, to our knowledge, insights into the nature of cell-cell contacts, revealing that cell contacts are highly heterogeneous because of topography- and protein-density-related processes. These effects are likely to profoundly influence signaling between cells.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Diffusion , Kinetics , Signal Transduction
8.
Sci Rep ; 8(1): 12644, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30139994

ABSTRACT

Somites are paired embryonic segments that form in a regular sequence from unsegmented mesoderm during vertebrate development. Although transient structures they are of fundamental importance as they generate cell lineages of the musculoskeletal system in the trunk such as cartilage, tendon, bone, endothelial cells and skeletal muscle. Surprisingly, very little is known about cellular dynamics underlying the morphological transitions during somite differentiation. Here, we address this by examining cellular rearrangements and morphogenesis in differentiating somites using live multi-photon imaging of transgenic chick embryos, where all cells express a membrane-bound GFP. We specifically focussed on the dynamic cellular changes in two principle regions within the somite, the medial and lateral domains, to investigate extensive morphological transformations. Furthermore, by using quantitative analysis and cell tracking, we capture for the first time a directed movement of dermomyotomal progenitor cells towards the rostro-medial domain of the dermomyotome, where skeletal muscle formation initiates.


Subject(s)
Somites/cytology , Animals , Cell Differentiation/physiology , Chick Embryo , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental/physiology , Mesoderm/cytology , Mesoderm/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Somites/metabolism
9.
Nanomaterials (Basel) ; 8(7)2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29966338

ABSTRACT

Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. This work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies.

10.
Biophys J ; 114(9): 2200-2211, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742413

ABSTRACT

Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose.


Subject(s)
Single Molecule Imaging/methods , T-Lymphocytes/cytology , Calcium Signaling , Glass/chemistry , Humans , Jurkat Cells , Leukocyte Common Antigens/metabolism , Surface Properties , Suspensions , T-Lymphocytes/metabolism
11.
Biophys J ; 113(12): 2762-2767, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29262368

ABSTRACT

Wnt proteins are secreted, hydrophobic, lipidated proteins found in all animals that play essential roles in development and disease. Lipid modification is thought to facilitate the interaction of the protein with its receptor, Frizzled, but may also regulate the transport of Wnt protein and its localization at the cell membrane. Here, by employing single-molecule fluorescence techniques, we show that Wnt proteins associate with and diffuse on the plasma membranes of living cells in the absence of any receptor binding. We find that labeled Wnt3A transiently and dynamically associates with the membranes of Drosophila Schneider 2 cells, diffuses with Brownian kinetics on flattened membranes and on cellular protrusions, and does not transfer between cells in close contact. In S2 receptor-plus (S2R+) cells, which express Frizzled receptors, membrane diffusion rate is reduced and membrane residency time is increased. These results provide direct evidence of Wnt3A interaction with living cell membranes, and represent, to our knowledge, a new system for investigating the dynamics of Wnt transport.


Subject(s)
Cell Membrane/metabolism , Optical Imaging , Wnt3A Protein/metabolism , Animals , Cell Line , Diffusion , Drosophila
12.
Nat Mater ; 15(10): 1090-4, 2016 10.
Article in English | MEDLINE | ID: mdl-27376682

ABSTRACT

Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

13.
Article in English | MEDLINE | ID: mdl-26973834

ABSTRACT

Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...