Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochemistry ; 40(7): 2011-22, 2001 Feb 20.
Article in English | MEDLINE | ID: mdl-11329268

ABSTRACT

The antibodies, HyHEL-10 and HyHEL-26 (H10 and H26, respectively), share over 90% sequence homology and recognize with high affinity the same epitope on hen egg white lysozyme (HEL) but differ in degree of cross-reactivity with mutant lysozymes. The binding kinetics, as measured by BIAcore surface plasmon resonance, of monovalent Fab from both Abs (Fab10 and Fab26) to HEL and mutant lysozymes are best described by a two-step association model consistent with an encounter followed by docking that may include conformational changes. In their complexes with HEL, both Abs make the transition to the docked phase rapidly. For H10, the encounter step is rate limiting, whereas docking is also partially rate limiting for H26. The forward rate constants of H10 are higher than those of H26. The docking equilibrium as well as the overall equilibrium constant are also higher for H10 than for H26. Most of the free energy change of association (Delta G degrees) occurs during the encounter phase (Delta G1) of both Abs. H10 derives a greater amount and proportion of free energy change from the docking phase (Delta G2) than does H26. In the H10--HEL(R21Q) complex, a significant slowing of docking results in lowered affinity, a loss of most of Delta G2, and apparently faster dissociation. Slower encounter and docking cause lowered affinity and a loss of free energy change primarily in the encounter step (Delta G1) of H26 with mutant HEL(R21Q). Overall, in the process of complex formation with lysozyme, the mutations HEL(R21X) affect primarily the docking phase of H10 association and both phases of H26. Our results are consistent with the interpretation that the free energy barriers to conformational rearrangement are highest in H26, especially with mutant antigen.


Subject(s)
Antigen-Antibody Reactions/genetics , Epitopes/genetics , Muramidase/metabolism , Mutagenesis, Site-Directed , Amino Acid Substitution/genetics , Animals , Antibodies, Monoclonal/metabolism , Antibody Affinity/genetics , Binding Sites, Antibody/genetics , Chickens , Dose-Response Relationship, Immunologic , Enzymes, Immobilized/genetics , Enzymes, Immobilized/immunology , Enzymes, Immobilized/metabolism , Epitopes/immunology , Epitopes/metabolism , Kinetics , Ligands , Models, Chemical , Models, Immunological , Models, Statistical , Muramidase/genetics , Muramidase/immunology , Ovum , Thermodynamics , Time Factors
2.
Methods ; 20(3): 310-8, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10694453

ABSTRACT

Using BIAcore surface plasmon resonance technology, we found that the real-time association kinetics of Fabs specific for hen egg-white lysozyme did not conform to a 1:1 Langmuir association model. Heterogeneity of the components is not the source of the complex kinetics. Informed by independent structural data suggesting conformational flexibility differences among these antibodies, we chose global mathematical analysis based on a two-phase model, consistent with the encounter-docking view of protein-protein associations. Experimental association times (T(a)) from 2 to 250 min revealed that initial dissociation rates decreased with increasing T(a), confirming a multiphasic association. The relationship between observed dissociation rate and T(a) is characteristic of each antibody-antigen complex. We define a new parameter, T(50), the time at which the encounter and final complexes are of equimolar concentration. The observed T(50) is a function of analyte concentration and the encounter and docking rate constants. Simulations showed that when the ligand is saturated at high analyte concentrations, T(50) reaches a minimum value, T(50)(MIN), which can be used to compare antigen-antibody complexes. For high-affinity complexes with rapid rearrangement to a stable complex, T(50)(MIN) approaches T(1/2) of the rearrangement forward rate constant. We conclude that experiments with a range of T(a) are essential to assess the nature of the kinetics, regardless of whether a two-state or 1:1 model is applicable. We suggest this strategy because each T(a) potentially reveals a different distribution of molecular states; for two-step analysis, a range of T(a) that brackets T(50) is optimal.


Subject(s)
Antigen-Antibody Complex/chemistry , Antigen-Antibody Reactions , Surface Plasmon Resonance , Animals , Antigen-Antibody Complex/metabolism , Humans , Kinetics
3.
Mol Immunol ; 36(17): 1189-205, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10698321

ABSTRACT

The mAbs HyHEL-8, HyHEL-26 (HH8, and HH26, respectively) recognize epitopes on hen egg-white lysozyme (HEL) highly overlapping with the structurally defined HH10 epitope, while the structurally related XRPC-25 is specific for DNP and does not bind HEL. All four Abs appear to use the same Vk23 germ line gene, and all but HH8 use the same VH36-60 germ line gene. Of the three anti-HEL Abs, the sequences of HH26 variable regions are closest to those encoded by the respective germ line sequences. HH8 utilizes a different member of the VH36-60 gene family. Thus, the same Vk and VH genes, combined with somatically derived sequence differences, are used to recognize the unrelated Ags HEL and DNP. In contrast, different VH36-60 germ line genes are used to bind the same antigen (e.g. HH8 vs HH10 and HH26). While the affinities of HH10, HH8, and HH26 for HEL vary by less than 10-fold, their affinities for mutated Ag vary over several orders of magnitude. Analyses of Fab binding kinetics with natural species variants and site-directed mutants of lysozyme indicate that these cross-reactivity differences reflect the relative sensitivities of both the association and dissociation rates to antigenic mutation: HH8 has relatively mutation-insensitive association and dissociation rates, HH10 has a relatively mutation-sensitive association rate but more variable dissociation rates, and HH26 has variable association and dissociation rates. Only a few amino acid differences among the antibodies produce the observed differences in the robustness of the association and dissociation rates. Our results suggest that association and dissociation rates and mutation sensitivity of these rates may be independently modulated during antibody repertoire development.


Subject(s)
Antibodies, Monoclonal/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibody Affinity , Antibody Specificity , Antigen-Antibody Reactions , Epitopes/chemistry , Epitopes/genetics , Genes, Immunoglobulin , Genetic Variation , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Kinetics , Muramidase/chemistry , Muramidase/genetics , Muramidase/immunology , Mutagenesis, Site-Directed
4.
Plant Physiol ; 86(4): 996-8, 1988 Apr.
Article in English | MEDLINE | ID: mdl-16666079

ABSTRACT

High molecular weight polypeptides from phycobilisomes, believed to be involved in facilitating the energy flow from phycobilisomes to thylakoids, are conserved in the prokaryote Nostoc sp. and the eukaryote Porphyridium cruentum. Partial N-terminal sequence analysis of the phycobilisome-polypeptides of Nostoc (94 kilodalton) and Porphyridium (92 kilodalton) revealed 55% identity in the first 20 residues, but no significant homology with sequences of other phycobiliproteins or phycobilisome-linkers. Polypeptides (94 and 92 kilodalton) from Nostoc thylakoids free of phycobilisomes, previously presumed to be involved in the phycobilisome-thylakoid linkage (M Mimuro, CA Lipschultz, E Gantt 1986 Biochim Biophys Acta 852: 126) exhibit the same immunocrossreactivity but are different from the 94 kilodalton-phycobilisome polypeptide by having blocked N-termini and a different amino acid composition.

5.
Plant Physiol ; 79(4): 943-8, 1985 Dec.
Article in English | MEDLINE | ID: mdl-16664550

ABSTRACT

Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.

6.
Biochemistry ; 20(12): 3371-6, 1981 Jun 09.
Article in English | MEDLINE | ID: mdl-7260042

ABSTRACT

Functional in vitro association and dissociation of a phycobiliprotein complex, isolated from phycobilisomes of the red alga Porphyridium sordidum, were studied. The complex contained large bangiophyceaen phycoerythrin and cyanophytan phycocyanin in an equimolar ration and had absorption maxima at 625, 567, and 550 nm and a shoulder at 495 nm. Emission at 655 nm (with excitation at 545 nm) from phycocyanin indicated functional coupling. The complex was stable over a wide buffer concentration range, and, notably, it was maximally stable in low phosphate, less than 0.01 M, unlike the phycobilisomes, which dissociate at this concentration. Its molecular weight was estimated to be ca. 510000, and by electron microscopy it was seen to consist of two units of similar size. The complex in 0.1 M phosphate was separated on a sucrose gradient into a homogeneous phycoerythrin band and a spectrally heterogeneous phycocyanin band. In vitro association of phycoerythrin and phycocyanin resulted in a complex with the same absorbance, emission, sedimentation and molar pigment ratio as those of the native complex. The spectrally heterogeneous phycocyanin fractions from the dissociation gradient varied in the degree of association with phycoerythrin. Phycocyanin fractions absorbing from 622 to 633 nm exhibited high associability (greater than 70%), whereas those with maxima at 617-620 nm had low associability (less than 30%). The presence of a 30000 molecular weight polypeptide accompanied high associability, where it was ca. 2-fold more prominent. It is suggested that this polypeptide is involved in complex formation and could serve either in the stabilization of the conformational state of cyanophytan phycocyanin or as a direct linker between phycobiliproteins.


Subject(s)
Phycocyanin/metabolism , Phycoerythrin/metabolism , Pigments, Biological/metabolism , Rhodophyta/metabolism , Energy Transfer , Kinetics , Microscopy, Electron , Molecular Weight , Phycobilisomes , Phycocyanin/isolation & purification , Phycoerythrin/isolation & purification , Rhodophyta/ultrastructure , Spectrophotometry
7.
Plant Physiol ; 63(4): 615-20, 1979 Apr.
Article in English | MEDLINE | ID: mdl-16660778

ABSTRACT

A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.

9.
Biochim Biophys Acta ; 430(2): 375-88, 1976 May 14.
Article in English | MEDLINE | ID: mdl-1276188

ABSTRACT

Phycobilisomes, isolated in 500 mM Sorensen's phosphate buffer pH 6.8 from the red alga, Porphyridium cruetum, were analyzed by selective dissociation at various phosphate concentrations. The results are consistent with a structural model consisting of an allophycocyanin core, surrounding by a hemispherical layer of R-phycocyanin, with phycoerythrin being on the periphery. Such a structure also allows maximum energy transfer. Intact phycobilisomes transfer excitation energy ultimately to a pigment with a fluorescence emission maximum at 675 nm. This pigment is presumed to be allophycocyanin in an aggreagated state. Uncoupling of energy transfer among the pigments, and physical release of the phycobiliproteins from the phycobilisome follow a parallel time-course; phycoerythrin is released first, followed by R-phycocyanin, and then allophycocyanin. In 55 mM phosphate buffer, the times at which 50% of each phycobiliprotein has dissociated are: phycoerythrin 40 min, R-phycocyanin 75 min, and allophycocyanin 140 min. The proposed arrangement of phycobiliproteins within phycobilisomes is also consistent with the results from precipitation reactions with monospecific antisera on intact and dissociated phycobilisomes. Anti-phycoertythrin reacts almost immediately with intact phycobilisomes, but reactivity with anti-R-phycocyanin and anti-allophycocyanin is considerably delayed, suggesting that the antigens are not accessible until a loosening of the phycobilsome structure occurs. Reaction wbilisomes, but is much more rapid in phycobilisomes of Nostoc sp. which contains 6-8 times more allophycocyanin. It is proposed that allophycocyanin is partially exposed on the base of isolated intact phycobilisomes of both algae, but that in P. cruentum there are too few accessible sites to permit a rapid formation of a precipitate with anti-allophyocyanin.


Subject(s)
Fungal Proteins , Rhodophyta/metabolism , Energy Transfer , Fungal Proteins/metabolism , Kinetics , Macromolecular Substances , Microscopy, Electron , Models, Biological , Phycobilisomes , Phycocyanin , Precipitin Tests , Protein Binding , Rhodophyta/ultrastructure , Species Specificity , Spectrometry, Fluorescence , Spectrophotometry
11.
J Bacteriol ; 116(1): 471-8, 1973 Oct.
Article in English | MEDLINE | ID: mdl-4200843

ABSTRACT

Phycobilisomes were isolated from a Nostoc sp. strain Mac in phosphate buffer (pH 7.0) by treatment with 1% Brij 56 and centrifugation on discontinuous sucrose gradients (2.0, 1.0, 0.5, and 0.25 M in the proportions 6:4:4:10 ml, respectively). Absorption spectra of isolated phycobilisomes showed the presence of phycoerythrin, phycocyanin, and allophycocyanin. The phycobilisome pigments were partially resolved by electrophoresis on acrylamide gels. Stained gels demonstrated that each main protein band corresponded to a pigmented region. The phycobilisomes appeared compact with a rounded surface and flattened base (about 40-nm diameter) at the attachment site to the photosynthetic lamellae. Fixation in glutaraldehyde caused a significant reduction in total pigment absorption, as well as shifts in the absorption maxima, particularly that of phycoerythrin.


Subject(s)
Cyanobacteria/cytology , Plant Proteins/analysis , Cell Membrane , Centrifugation, Density Gradient , Cyanobacteria/analysis , Electrophoresis, Polyacrylamide Gel , Microscopy, Electron , Phycobilisomes , Pigments, Biological/analysis , Plant Proteins/isolation & purification , Spectrophotometry, Ultraviolet , Surface-Active Agents
13.
J Cell Biol ; 54(2): 313-24, 1972 Aug.
Article in English | MEDLINE | ID: mdl-5040862

ABSTRACT

A procedure was developed for the isolation of phycobilisomes from Porphyridium cruentum. The cell homogenate, suspended in phosphate buffer (pH 6.8), was treated with 1% Triton X-100, and its supernatant fraction was centrifuged on a sucrose step gradient. Phycobilisomes were recovered in the 1 M sucrose band. The phycobilisome fraction was identified by the characteristic appearance of the phycobilisomes, and the absorbance of the component pigments: phycoerythrin, R-phycocyanin, and allophycocyanin Isolated phycobilisomes had a prolate shape, with one particle axis longer than the other. Their size varied somewhat with their integrity, but was about 400-500 A (long axis) by 300-320 A (short axis). Phycobilisome recovery was determined at six phosphate buffer concentrations from 0.067 M to 1.0 M. In 0.5 M phosphate, phycobilisome yield (60%) and preservation were optimal. Such a preparation had a phycoerythrin 545 nm/phycocyanin 620 nm ratio of 8.4. Of the detergents tested (Triton X-100, Tween 80, and sodium deoxycholate), Triton X-100 gave the best results Freezing of the cells caused destruction of phycobilisomes.


Subject(s)
Cytoplasmic Granules , Eukaryota/cytology , Pigments, Biological/analysis , Buffers , Cell Fractionation , Cells, Cultured , Centrifugation, Density Gradient , Chlorophyll/analysis , Microscopy, Electron , Phosphates , Photosynthesis , Phycobilisomes , Rhodophyta/cytology , Surface-Active Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...