Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(16): 18512-18518, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32239908

ABSTRACT

Increasing the Ni content of LiNixMnyCo1-x-yO2 (NMC) cathodes can increase the capacity, but additional stability is needed to improve safety and longevity characteristics. In order to achieve this improved stability, Mg and Zr were added during the coprecipitation to uniformly dope the final cathode material. These dopants reduced the capacity of the material to some extent, depending on the concentration and calcination temperature. However, these dopants can impart substantial stabilization. It was found that the degree of stabilization is strongly dependent on the calcination temperature of the material. In addition, we used synchrotron X-ray diffraction during thermal breakdown to better understand why the different dopants impact the thermal stability and confirm the stabilization effects of the dopants.

2.
ACS Appl Mater Interfaces ; 7(51): 28438-43, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26641524

ABSTRACT

We report an approach to control the reversible electrochemical activity (i.e., extraction/insertion) of Mg(2+) in a cathode host through the use of phase-pure epitaxially stabilized thin film structures. The epitaxially stabilized MgMn2O4 (MMO) thin films in the distinct tetragonal and cubic phases are shown to exhibit dramatically different properties (in a nonaqueous electrolyte, Mg(TFSI)2 in propylene carbonate): tetragonal MMO shows negligible activity while the cubic MMO (normally found as polymorph at high temperature or high pressure) exhibits reversible Mg(2+) activity with associated changes in film structure and Mn oxidation state. These results demonstrate a novel strategy for identifying the factors that control multivalent cation mobility in next-generation battery materials.

3.
Adv Mater ; 23(47): 5613-7, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22052671

ABSTRACT

Scanning ion conductance microscopy imaging of battery electrodes, using the geometry shown in the figure, is a tool for in situ nanoscale mapping of surface topography and local ion current. Images of silicon and tin electrodes show that the combination of topography and ion current provides insight into the local electrochemical phenomena that govern the operation of lithium ion batteries.


Subject(s)
Electric Power Supplies , Electrochemical Techniques , Lithium/chemistry , Microscopy, Electron, Scanning/methods , Cations/chemistry , Electrodes , Energy Transfer , Metal Nanoparticles/chemistry
4.
ACS Nano ; 5(6): 5223-32, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21553842

ABSTRACT

The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO(2) and Al(2)O(3) on epitaxial graphene on SiC(0001). The PTCDA is deposited via sublimation in ultrahigh vacuum and shown to be highly ordered with low defect density by molecular-resolution scanning tunneling microscopy. Whereas identical ALD conditions lead to incomplete and rough dielectric deposition on bare graphene, the chemical functionality provided by the PTCDA seeding layer yields highly uniform and conformal films. The morphology and chemistry of the dielectric films are characterized by atomic force microscopy, ellipsometry, cross-sectional scanning electron microscopy, and X-ray photoelectron spectroscopy, while high-resolution X-ray reflectivity measurements indicate that the underlying graphene remains intact following ALD. Using the PTCDA seeding layer, metal-oxide-graphene capacitors fabricated with a 3 nm Al(2)O(3) and 10 nm HfO(2) dielectric stack show high capacitance values of ∼700 nF/cm(2) and low leakage currents of ∼5 × 10(-9) A/cm(2) at 1 V applied bias. These results demonstrate the viability of sublimated organic self-assembled monolayers as seeding layers for high-k dielectric films in graphene-based nanoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...