Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 15(11): 962-968, 2018 11.
Article in English | MEDLINE | ID: mdl-30377376

ABSTRACT

Functional profiles of microbial communities are typically generated using comprehensive metagenomic or metatranscriptomic sequence read searches, which are time-consuming, prone to spurious mapping, and often limited to community-level quantification. We developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved functional profiling of host-associated and environmental communities. HUMAnN2 identifies a community's known species, aligns reads to their pangenomes, performs translated search on unclassified reads, and finally quantifies gene families and pathways. Relative to pure translated search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied HUMAnN2 to study clinal variation in marine metabolism, ecological contribution patterns among human microbiome pathways, variation in species' genomic versus transcriptional contributions, and strain profiling. Further, we introduce 'contributional diversity' to explain patterns of ecological assembly across different microbial community types.


Subject(s)
Bacteria/classification , Bacteria/genetics , Bacterial Proteins/genetics , Gene Expression Profiling , Metagenome , Software , Transcriptome , Bacteria/isolation & purification , Bacterial Proteins/metabolism , High-Throughput Nucleotide Sequencing , Humans , Microbiota , Species Specificity
2.
Microbiome ; 5(1): 10, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28122648

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children. RESULTS: MTT involved a 2-week antibiotic treatment, a bowel cleanse, and then an extended fecal microbiota transplant (FMT) using a high initial dose followed by daily and lower maintenance doses for 7-8 weeks. The Gastrointestinal Symptom Rating Scale revealed an approximately 80% reduction of GI symptoms at the end of treatment, including significant improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain. Improvements persisted 8 weeks after treatment. Similarly, clinical assessments showed that behavioral ASD symptoms improved significantly and remained improved 8 weeks after treatment ended. Bacterial and phagedeep sequencing analyses revealed successful partial engraftment of donor microbiota and beneficial changes in the gut environment. Specifically, overall bacterial diversity and the abundance of Bifidobacterium, Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes persisted after treatment stopped (followed for 8 weeks). CONCLUSIONS: This exploratory, extended-duration treatment protocol thus appears to be a promising approach to alter the gut microbiome and virome and improve GI and behavioral symptoms of ASD. Improvements in GI symptoms, ASD symptoms, and the microbiome all persisted for at least 8 weeks after treatment ended, suggesting a long-term impact. TRIAL REGISTRATION: This trial was registered on the ClinicalTrials.gov, with the registration number  NCT02504554.


Subject(s)
Autism Spectrum Disorder/therapy , Fecal Microbiota Transplantation , Gastrointestinal Diseases/therapy , Gastrointestinal Microbiome , Probiotics/therapeutic use , Abdominal Pain/drug therapy , Adolescent , Anti-Bacterial Agents/therapeutic use , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/microbiology , Bacteriophages/genetics , Bacteriophages/growth & development , Bifidobacterium/growth & development , Child , Constipation/drug therapy , DNA, Viral , Desulfovibrio/growth & development , Diarrhea/drug therapy , Diarrhea/microbiology , Female , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Prevotella/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...