Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 816: 151643, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34780839

ABSTRACT

Globally, one-third of the terrestrial carbon (C) is stored in tropical soils. The warming predicted for this century is expected to increase microbial decomposition in soil and escalate climate change potential by releasing more carbon dioxide (CO2) into the atmosphere. Understanding the response of soils to warming is a key challenge in predicting future climate change trajectories. Here we examined the combined effect of soil temperature (Ts) and soil water content (VWC) on soil heterotrophic respiration (Rsh) and its temperature sensitivity across different altitudes (2400, 1900, and 1450 m ASL) in the Ailaoshan subtropical forest ecosystem, Southwest China. Along the elevation gradient, soil C stocks in the top 10 cm soil layer increased significantly from 10.7 g/ kg at 1480 m ASL to 283.1 g/ kg at 2480 m ASL. Soil cores from various elevations were translocated to the same, and lower elevations and Rsh from those cores were measured every month from February 2010 to January 2014. Temperature sensitivity (Q10) of Rsh for the period was highest at the highest (H) elevation (Q10 = 5.3), decreased significantly towards the middle (M, Q10 = 3.1) and low (L, Q10 = 1.2) elevation. Q10 at M and L elevation did not differ between the place of origin and translocated cores. For the cores within each elevation, Q10 did not vary across the years. Our models suggest that Rsh increased significantly in response to an increase in Ts at each elevation under an intermediate VWC. Hence, the rate of emission was higher in lower elevations due to a higher Ts range. Our findings highlight that the predicted warming over the 21st century will have the greatest impact of Ts on Rsh, especially on the soils at the highest elevations, and will lead towards positive feedback to the climate system.


Subject(s)
Ecosystem , Soil , China , Forests , Respiration , Soil Microbiology , Temperature
2.
Environ Sci Pollut Res Int ; 24(9): 8137-8146, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28144865

ABSTRACT

Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha-1. The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.


Subject(s)
Carbon Sequestration , Forests , Biomass , Carbon/analysis , China , Fagaceae/growth & development , Plant Stems/growth & development , Soil/chemistry
3.
PLoS One ; 9(12): e115234, 2014.
Article in English | MEDLINE | ID: mdl-25536041

ABSTRACT

Extension of the rotation length in forest management has been highlighted in Article 3.4 of the Kyoto Protocol to help the countries in their commitments for reduction in greenhouse gas emissions. CO2FIX Model Ver.3.2 was used to examine the dynamics of carbon stocks (C stocks) in a rubber plantation in South Western China with the changing rotation lengths. To estimate the efficiency of increasing the rotation length as an Article 3.4 activity, study predicted that the rubber production and C stocks of the ecosystem increased with the increasing rotation (25, 30, 35, 40 and 45 years). While comparing the pace of growth both in economical (rubber production) and ecological (C stocks) terms in each rotation, 40 years rotation length showed maximum production and C stocks. After elongation of 40 year rotation to four consecutive cycles, it was concluded that the total C stocks of the ecosystem were 186.65 Mg ha(-1). The longer rotation lengths showed comparatively increased C stocks in below ground C stock after consecutive four rotations. The pace of C input (Mg C ha(-1) yr(-1)) and rubber production indicated that 40 years rotation is best suited for rubber plantation. The study has developed carbon mitigation based on four rotation scenarios. The possible stimulated increase in C stocks of the entire ecosystem after consecutive long rotations indicated that the emphasis must be paid on deciding the rotation of rubber plantation in SW China for reporting under article 3.4 of the Kyoto Protocol.


Subject(s)
Agriculture , Carbon Sequestration , Hevea/growth & development , Agriculture/economics , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , China , Computer Simulation , Ecosystem , Income , Regression Analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...