ABSTRACT
Frost forecast is an important issue in climate research because of its economic impact on several industries. In this study, we propose GRAST-Frost, a graph neural network (GNN) with spatio-temporal architecture, which is used to predict minimum temperatures and the incidence of frost. We developed an IoT platform capable of acquiring weather data from an experimental site, and in addition, data were collected from 10 weather stations in close proximity to the aforementioned site. The model considers spatial and temporal relations while processing multiple time series simultaneously. Performing predictions of 6, 12, 24, and 48 h in advance, this model outperforms classical time series forecasting methods, including linear and nonlinear machine learning methods, simple deep learning architectures, and nongraph deep learning models. In addition, we show that our model significantly improves on the current state of the art of frost forecasting methods.
Subject(s)
Machine Learning , Neural Networks, Computer , Forecasting , Time Factors , WeatherABSTRACT
Knowledge of the mental workload induced by a Web page is essential for improving users' browsing experience. However, continuously assessing the mental workload during a browsing task is challenging. To address this issue, this paper leverages the correlation between stimuli and physiological responses, which are measured with high-frequency, non-invasive psychophysiological sensors during very short span windows. An experiment was conducted to identify levels of mental workload through the analysis of pupil dilation measured by an eye-tracking sensor. In addition, a method was developed to classify mental workload by appropriately combining different signals (electrodermal activity (EDA), electrocardiogram, photoplethysmo-graphy (PPG), electroencephalogram (EEG), temperature and pupil dilation) obtained with non-invasive psychophysiological sensors. The results show that the Web browsing task involves four levels of mental workload. Also, by combining all the sensors, the efficiency of the classification reaches 93.7%.