Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Chromatogr ; 37(11): e5723, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581307

ABSTRACT

The aim of this study is to demonstrate the stability-indicating capacity of an analytical method for Eugenia uniflora, enhance understanding of the stability of myricitrin, and assess the effect of degradation of spray-dried extract (SDE) on antioxidant and antifungal activities. Validation of the stability-indicating method was carried out through a forced degradation study of SDE and standard myricitrin. The antioxidant and antifungal activities of SDE were evaluated both before and after degradation. The quantification method described was found to be both accurate and precise in measuring myricitrin levels in SDE from E. uniflora, with excellent selectivity that confirmed its stability-indicating capability. The forced degradation study revealed that the marker myricitrin is sensitive to hydrolysis, but generally stable under other stress conditions. By contrast, the standard myricitrin displayed greater susceptibility to degradation under forced degradation conditions. Analysis of the antioxidant activity of SDE before and after degradation showed a negative impact in this activity due to degradation, while no significant effect was observed on antifungal activity. The method described can be a valuable tool in the quality control of E. uniflora, and the findings can assist in determining the optimal conditions and storage of products derived from this species.

2.
Chem Biodivers ; 20(8): e202201241, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455394

ABSTRACT

Because of the increasing demand for natural products, the development of nanoformulations containing natural active ingredients requires in-depth knowledge of the substances used, methods of obtaining, and stability profiles to ensure product quality, efficacy, and safety. Considering this, the bibliography of the last five years presented in databases (PubMed and Science Direct) was discussed in this work, discussing the study with medicinal plants to obtain active metabolites with therapeutic properties, as well as the different nano-systems responsible for carrying these molecules. Due to the wealth of biodiversity found in the world, many species are submitted to the extraction process for several purposes. However, identifying, classifying, and quantifying the constituents of herbal matrices are crucial steps to verify their therapeutic potential. In addition, knowing the techniques of production and elaboration of nanotechnology products allows the optimization of the incorporation of herbal extracts as an innovation target. For studies to be successful, it is necessary to exhaust experimental results that guarantee the efficacy, safety, and quality of natural nanosystems, with the objective of obtaining reliable answers in nanotechnology therapy.


Subject(s)
Biological Products , Plants, Medicinal , Plant Extracts/therapeutic use , Phytotherapy/methods , Nanotechnology
3.
J Ethnopharmacol ; 298: 115668, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36038093

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Eugenia uniflora Linn (Myrtaceae) is the native species of Brazil. The leaves of this species are used in folk medicine to treat different inflammatory and gastrointestinal disorders. However, research on the safety of using E. uniflora leaves has been poorly explored. AIM OF THE STUDY: This approach aims to investigate the phytochemical composition as well as the acute, subacute toxicity, and in vivo genotoxic profile of the aqueous extract of E. uniflora leaves. MATERIALS AND METHODS: The chemical composition of E. uniflora leaf extract was determined by Fingerprint by High-Performance Thin Layer and High-Performance Liquid Chromatography. The acute toxicity in vivo was evaluated for 14 days after the administration of E. uniflora leaves extract (2000 mg/kg). For the evaluation of subacute toxicity, mice were daily treated for 28 days with E. uniflora extract (250, 500, or 1000 mg/kg). Signs of behavioral toxicity and biochemical and hematological alterations, including the multiple organ toxicities were investigated. In addition, the micronucleus assay was used to evaluate the in vivo genotoxicity of the leaves extract in murine erythrocytes. RESULTS: The phytochemical analysis showed the majority presence of phenolic compounds (gallic acid, ellagic acid, and myricitrin). Single or repeated doses of the aqueous extract of E. uniflora leaves did not reveal any signs of in vivo toxicity. Daily doses of the extract for 28 days induced a slight reduction in cholesterol and triglyceride levels. Furthermore, E. uniflora leaves extract (1000-2000 mg/kg) showed no genetic damage in the micronucleus assay, indicating the absence of genotoxicity of the herbal species. CONCLUSION: The aqueous extract of E. uniflora leaves showed a predominance of phenolic compounds, with non-toxic and non-genotoxic action in vivo. This approach sheds light on the chemical composition of the leaves of E. uniflora and suggests a high margin of safety in the popular use of the leaves of this plant species.


Subject(s)
Eugenia , Myrtaceae , Animals , Antioxidants/pharmacology , Eugenia/chemistry , Mice , Phytochemicals/analysis , Plant Extracts/pharmacology , Plant Leaves/chemistry
4.
J Ethnopharmacol ; 296: 115508, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35779820

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Eugenia uniflora (Myrtaceae) is a species native to Brazil and has a traditional use in the treatment of inflammation. AIM OF THE STUDY: To evaluate the anti-inflammatory and antinociceptive effects, and the involvement of opioid receptors in the antinociceptive activity of extract and fractions from Eugenia uniflora leaves. MATERIALS AND METHODS: TLC and HPLC were used to characterize the spray-dried extract (SDE) and fractions. In the in vivo assays, Swiss (Mus musculus) mice were used. Carrageenan-induced hind-paw edema and carrageenan-induced peritonitis models were used to determine the anti-inflammatory effect of the extract (50, 100, or 200 mg/kg). Acetic acid-induced writhing, tail-flick, and formalin tests were used to determine the antinociceptive effect of the extract (50, 100, or 200 mg/kg). The aqueous (AqF) and ethyl acetate (EAF) fractions (6.25, 12.5, and 25 mg/kg) were then combined with naloxone to evaluate the involvement of opioid receptors in the antinociceptive activity. RESULTS: In this work, the TLC and HPLC analysis evidenced the enrichment of EAF, which higher concentration of gallic acid (5.29 ± 0.0004 %w/w), and ellagic acid (1.28 ± 0.0002 %w/w) and mainly myricitrin (8.64 ± 0.0002 %w/w). The extract decreased the number of total leukocytes and neutrophils in the peritoneal cavity (p < 0.05), at doses of 100 and 200 mg/kg and showed significant inhibition in the increase of paw edema volume (p < 0.05). The treatment per oral route (doses of 50, 100, and 200 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhing (p < 0.05). The effect of the extract on the tail-flick test showed a significant increase in latency time of animals treated at doses of 200 and 100 mg/kg (p < 0.05). The extract and ethyl acetate fraction reduced the nociceptive effect in both phases of formalin at all tested doses. The naloxone reversed the antinociceptive effect of EAF, suggesting that opioid receptors are involved in mediating the antinociceptive activity of EAF of E. uniflora in the formalin test. CONCLUSION: The current study demonstrates the anti-inflammatory and analgesic activities of water: ethanol: propylene glycol spray-dried extract from E. uniflora leaves using in vivo pharmacological models in mice. Our findings suggest that spray-dried extract and ethyl acetate fraction exhibit peripheral and central antinociceptive activity with the involvement of opioid receptors that may be related to the presence of flavonoids, mainly myricitrin.


Subject(s)
Eugenia , Acetic Acid/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carrageenan , Edema/chemically induced , Edema/drug therapy , Ethanol/therapeutic use , Mice , Naloxone/pharmacology , Pain/chemically induced , Pain/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Propylene Glycols/adverse effects , Receptors, Opioid , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...