Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Forests ; 13(1): 102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35909941

ABSTRACT

This study presents the first Late Holocene marine pollen record (core ND2) from SE Sicily. It encompasses the last 3000 years and is one of the most detailed records of the south-central Mediterranean region in terms of time resolution. The combined approach of marine palynology and historical ecology, supported by independent palaeoclimate proxies, provides an integrated regional reconstruction of past vegetational dynamics in relation to rapid climatic fluctuations, historical socio-economic processes, and past land-use practices, offering new insights into the vegetation history of SE Sicily. Short-term variations of sparse tree cover in persistently open landscapes reflect rapid hydroclimatic changes and historical land-use practices. Four main phases of forest reduction are found in relation to the 2.8 ka BP event, including the Late Antique Little Ice Age, the Medieval Climate Anomaly, and the Little Ice Age, respectively. Forest recovery is recorded during the Hellenistic and Roman Republican Periods, the Early Middle Ages, and the last century. Agricultural and silvicultural practices, as well as stock-breeding activities, had a primary role in shaping the current vegetational landscape of SE Sicily.

2.
Sci Rep ; 9(1): 11683, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406172

ABSTRACT

An association between climatic conditions and asthma mortality has been widely assumed. However, it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. The aim of this study is to detect a possible correlation between climatic indices, namely the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation, and asthma mortality rates over the period from 1950 to 2015 in the contiguous US. To this aim, an analysis of non-stationary and non-linear signals was performed on time series of US annual asthma mortality rates, AMO and PDO indices to search for characteristic periodicities. Results revealed that asthma death rates evaluated for four different age groups (5-14 yr; 15-24 yr; 25-34 yr; 35-44 yr) share the same pattern of fluctuation throughout the 1950-2015 time interval, but different trends, i.e. a positive (negative) trend for the two youngest (oldest) categories. Annual asthma death rates turned out to be correlated with the dynamics of the AMO, and also modulated by the PDO, sharing the same averaged ∼44 year-periodicity. The results of the current study suggest that, since climate patterns have proved to influence asthma mortality rates, they could be advisable in future studies aimed at elucidating the complex relationships between climate and asthma mortality.


Subject(s)
Asthma/mortality , Climate , Models, Statistical , Adolescent , Adult , Asthma/epidemiology , Atlantic Ocean , Child , Child, Preschool , Female , Humans , Male , North America/epidemiology , Pacific Ocean , Periodicity , Survival Analysis
3.
Sci Rep ; 8(1): 8929, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895868

ABSTRACT

It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.


Subject(s)
Climate Change , Climate , Forests , Spatio-Temporal Analysis , Geography , Geologic Sediments , Hydrology , Mediterranean Region , Pollen/metabolism , Population Dynamics , Seasons , Time Factors
4.
Integr Zool ; 9(4): 542-54, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24382193

ABSTRACT

A high-resolution integrated study has been performed in a super-expanded marine record (sedimentation rate spanning from 11 cm/100 years to 20 cm/100 years) from the continental shelf area of the southeastern Tyrrhenian Sea. Planktonic foraminiferal distribution illustrates 6 major environmental changes during the past 2000 years: (i) the Roman Period-Dark Age transition (from herbivorous-opportunistic to carnivorous species); (ii) the Dark Age-MCA transition (from carnivorous to herbivorous-opportunistic species); (iii) the Medieval Classic Anomaly-Little Ice Age transition (a further and definitive change from carnivorous to herbivorous-opportunistic species); (iv) the period during the Maunder event between approximately 1720 AD and 1740 AD (turnover from the carnivorous planktonic foraminifer Globigerinodes ruber to the herbivorous-opportunistic planktonic foraminifer Turborotalita quinqueloba); (v) the Industrial Period (dominance of herbivorous-opportunistic planktonic foraminifera); and (vi) the Modern Warm Period at approximately 1940 AD (the last turnover in favor of herbivorous-opportunistic planktonic foraminifers, associated with an increase in benthic foraminifera). Our studies lead us to link this latter feature to an anthropogenic impact associated with the damming of Sele River (Salerno Gulf) at 1934 AD, which induced a change in the sediment input with a strong decrease in coarse-grained fraction and a probable alteration in nutrient supply. The δ(18) OG. ruber record of the past 2000 years shows the alternation of warm/wet and cold/dry events related to the Roman Period, the Dark Age, the Medieval Classic Anomaly, the Little Ice Age, the Industrial Period and the Modern Warm Period. The 5 evident δ(18) OG. ruber oscillations (between approximately 1325 AD and 1940 AD) coincide with the 5 minima in the solar activity record (Wolf, Spörer, Maunder, Dalton and Damon events).


Subject(s)
Climate Change , Environmental Monitoring/methods , Foraminifera/chemistry , Carbon Isotopes/analysis , Foraminifera/physiology , Fossils , Geologic Sediments/chemistry , Mediterranean Sea , Oceanography/methods , Oxygen Isotopes/analysis , Plankton
SELECTION OF CITATIONS
SEARCH DETAIL
...