Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982806

ABSTRACT

The purpose of this study was to describe the use of PLDLA/TPU matrix enriched with cyclosporine A (CsA) as a therapeutic platform in horses with immune-mediated keratitis (IMMK) with an in vitro evaluation CsA release and degradation of the blend as well as determination of the safety and efficacy of that platform used in the animal model. The kinetics of the CsA release from matrices constructed of thermoplastic polyurethane (TPU) polymer and a copolymer of L-lactide with DL-lactide (PLDLA) (80:20) in the TPU (10%) and a PLDL (90%) polymer blend were studied. Moreover, we used the STF (Simulated Tear Fluid) at 37 °C as a biological environment to assess the CsA release and its degradation. Additionally, the platform described above was injected subconjunctival in the dorsolateral quadrant of the globe after standing sedation of horses with diagnosed superficial and mid-stromal IMMK. The obtained results indicated that the CsA release rate in the fifth week of the study increased significantly by the value of 0.3% compared to previous weeks. In all of the cases, the TPU/PLA doped with 12 mg of the CsA platform effectively reduced the clinical symptoms of keratitis, leading to the complete remission of the corneal opacity and infiltration four weeks post-injection. The results from this study showed that the PLDLA/TPU matrix enriched with the CsA platform was well tolerated by the equine model and effective in treating superficial and mid-stromal IMMK.


Subject(s)
Cyclosporine , Keratitis , Horses , Animals , Cyclosporine/therapeutic use , Polyurethanes , Keratitis/drug therapy , Keratitis/veterinary
2.
Polymers (Basel) ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207553

ABSTRACT

Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide (PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity up to 90% have been manufactured. They have been intended for gap filling in the injured spinal cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with the increase of polylactide content. The rise of polylactide content caused an increase of Young modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends. The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were tested. Sponges underwent continuous degradation with varying degradation rates depending on the polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.

3.
J Biomed Mater Res B Appl Biomater ; 108(4): 1398-1411, 2020 05.
Article in English | MEDLINE | ID: mdl-31513334

ABSTRACT

Recently, iron oxide nanoparticles (IONPs) have gathered special attention in regenerative medicine. Owing to their magnetic and bioactive properties, IONPs are utilized in the fabrication of novel biomaterials. Yet, there was no report regarding thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) polymer doped with IONPs on osteogenic differentiation of mesenchymal stem cells. Thus the objectives of presented study was to: (a) fabricate magnetic TPU + PLA sponges doped with iron (III) oxide Fe2 O3 nanoparticles; (b) investigate the effects of biomaterial and its exposition to static magnetic field (MF) on osteogenic differentiation, proliferation, and apoptosis in adipose-derived mesenchymal stem cells (ASCs). TPU + PLA sponges were prepared using solvent casting technique while incorporation of the Fe2 O3 nanoparticles was performed with solution cast method. RT-PCR was applied to evaluate expression of osteogenic-related genes and integrin's in cells cultured on fabricated materials with or without the stimulation of static MF. MF stimulation enhanced the expression of osteopontin and collagen type I while decreased expression of bone morphogenetic protein 2 in tested magnetic materials-TPU + PLA/1% Fe2 O3 and TPU + PLA/5% Fe2 O3 . Therefore, TPU + PLA sponges doped with IONPs and exposure to MF resulted in improved osteogenic differentiation of ASC.


Subject(s)
Cell Differentiation/drug effects , Magnetic Fields , Magnetite Nanoparticles/chemistry , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Polyesters , Polyurethanes , Adipose Tissue , Animals , Female , Male , Mice , Polyesters/chemistry , Polyesters/pharmacology , Polyurethanes/chemistry , Polyurethanes/pharmacology
4.
Polymers (Basel) ; 10(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30960998

ABSTRACT

Thermoplastic polyurethane (TPU) and poly(lactic acid) are types of biocompatible and degradable synthetic polymers required for biomedical applications. Physically blended (TPU+PLA) tissue engineering matrices were produced via solvent casting technique. The following types of polymer blend were prepared: (TPU+PLA) 7:3, (TPU+PLA) 6:4, (TPU+PLA) 4:6, and (TPU+PLA) 3:7. Various methods were employed to characterize the properties of these polymers: surface properties such as morphology (scanning electron microscopy), wettability (goniometry), and roughness (profilometric analysis). Analyses of hydrophilic and hydrophobic properties, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) of the obtained polymer blends were conducted. Tensile tests demonstrated that the blends exhibited a wide range of mechanical properties. Cytotoxicity of polymers was tested using human multipotent stromal cells derived from adipose tissue (hASC). In vitro assays revealed that (TPU+PLA) 3:7 matrices were the most cytocompatible biomaterials. Cells cultured on (TPU+PLA) 3:7 had proper morphology, growth pattern, and were distinguished by increased proliferative and metabolic activity. Additionally, it appeared that (TPU+PLA) 3:7 biomaterials showed antiapoptotic properties. hASC cultured on these matrices had reduced expression of Bax-α and increased expression of Bcl-2. This study demonstrated the feasibility of producing a biocompatible scaffold form based on (TPU+PLA) blends that have potential to be applied in tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...