Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 283(10): 1880-901, 2016 05.
Article in English | MEDLINE | ID: mdl-26972759

ABSTRACT

The 5' untranslated region (UTR) of the full-length mRNA of the mouse mammary tumor virus (MMTV) harbors an internal ribosomal entry site (IRES). In this study, we show that the polypyrimidine tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the MMTV 5' UTR stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Results show that PTB1 and PTB4, but not PTB2, stimulate MMTV-IRES activity. PTB1 promotes MMTV-IRES-mediated initiation more strongly than PTB4. When expressed in combination, PTB1 further enhanced PTB4 stimulation of the MMTV-IRES, while PTB2 fully abrogates PTB4-induced stimulation. PTB1-induced stimulation of MMTV-IRES was not altered in the presence of PTB4 or PTB2. Mutational analysis reveals that stimulation of MMTV-IRES activity is abrogated when PTB1 is mutated either in RRM1/RRM2 or RRM3/RRM4. In contrast, a PTB4 RRM1/RRM2 mutant has reduced effect over MMTV-IRES activity, while stimulation of the MMTV-IRES activity is still observed when the PTB4 RRM3/RMM4 mutant is used. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity. In contrast, PTB2 acts as a negative modulator of PTB4-induced stimulation of MMTV-IRES. We conclude that PTB1 and PTB4 act as IRES trans-acting factors of the MMTV-IRES.


Subject(s)
5' Untranslated Regions , Mammary Tumor Virus, Mouse/genetics , Polypyrimidine Tract-Binding Protein/metabolism , RNA Caps , RNA, Messenger/genetics , Binding Sites , Gene Knockdown Techniques , Genes, Viral , HEK293 Cells , Humans , Internal Ribosome Entry Sites , Polypyrimidine Tract-Binding Protein/genetics
2.
Reprod Biol Endocrinol ; 9: 97, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21729302

ABSTRACT

Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies.


Subject(s)
Bradykinin/pharmacology , Cell Movement/drug effects , Trophoblasts/physiology , Bradykinin/analogs & derivatives , Bradykinin/antagonists & inhibitors , Bradykinin B1 Receptor Antagonists , Cell Line , Cell Proliferation/drug effects , Humans , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Pseudopodia/drug effects , Pseudopodia/physiology , Receptor, Bradykinin B1/drug effects , Receptor, Bradykinin B2/physiology , Trophoblasts/drug effects , Wound Healing/drug effects
3.
Neurotox Res ; 19(4): 603-27, 2011 May.
Article in English | MEDLINE | ID: mdl-20645042

ABSTRACT

Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD(+) tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase ß, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care.


Subject(s)
Asphyxia Neonatorum/metabolism , Asphyxia Neonatorum/prevention & control , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/biosynthesis , Neuroprotective Agents/therapeutic use , Animals , Drug Delivery Systems , Humans , Infant, Newborn , Nerve Tissue Proteins/metabolism , Neuroprotective Agents/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/biosynthesis , Xeroderma Pigmentosum Group D Protein/biosynthesis
4.
Exp Brain Res ; 202(1): 1-14, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20012537

ABSTRACT

There is no established treatment for the long-term effects produced by perinatal asphyxia. Thus, we investigated the neuroprotection provided by nicotinamide against the effects elicited by perinatal asphyxia on hippocampus and behaviour observed at 30-90 days of age. Asphyxia was induced by immersing foetuses-containing uterine horns, removed from ready-to-deliver rats into a water bath at 37 degrees C for 20 min. Caesarean-delivered siblings were used as controls. Saline or nicotinamide (0.8 mmol/kg, i.p.) was administered to control and asphyxia-exposed animals 24, 48, and 72 h after birth. The animals were examined for morphological changes in hippocampus, focusing on delayed cell death and mossy fibre sprouting, and behaviour, focusing on cognitive behaviour and anxiety. At the age of 30-45 days, asphyxia-exposed rats displayed (1) increased apoptosis, assessed in whole hippocampus by nuclear Hoechst staining, and (2) increased mossy fibre sprouting, restricted to the stratum oriens of dorsal hippocampus, assessed by Timm's staining. Rats from the same cohorts displayed (3) deficits in non-spatial working memory, assessed by a novel object recognition task, and (4) increased anxiety, assessed by an elevated plus-maze test when examined at the age of 90 days. Nicotinamide prevented the effects elicited by perinatal asphyxia on apoptosis, working memory, and anxiety.


Subject(s)
Asphyxia Neonatorum/drug therapy , Behavior, Animal/drug effects , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , Niacinamide/pharmacology , Prenatal Injuries/drug therapy , Aging , Animals , Animals, Newborn , Anxiety/drug therapy , Apoptosis/drug effects , Asphyxia Neonatorum/pathology , Asphyxia Neonatorum/physiopathology , Female , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Infant, Newborn , Male , Memory, Short-Term/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Prenatal Injuries/pathology , Rats , Rats, Wistar , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...