Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Braz. dent. sci ; 26(1): 1-9, 2023. tab, ilus
Article in English | BBO - Dentistry , LILACS | ID: biblio-1411432

ABSTRACT

Objective: to analyze the stress distribution in a 3D model that simulates second molar mesialization using two different types of mini-implants. Material and Methods: a mandible bone model was obtained by recomposing a computed tomography performed by a software program. The cortical and trabecular bone, a lower second molar, periodontal ligament, orthodontic tube, resin cement and the mini-implants were designed and modeled using the Rhinoceros 4.0 software program. The characteristics of self-drilling orthodontic mini-implants were: one with 7 mm length, 1 mm transmucosal neck section and 1.6 mm diameter and another with 5 mm length and 1.5 mm diameter. A total of 235.161 and 224.505 elements were used for the mesh. These models were inserted into the bone block and then subjected to loads of 200 cN (centinewton). The results were calculated and analyzed by the Ansys 17.0 software program for qualitative verification through displacement and maximum principal stress maps. Results: it was possible to observe that the periodontal ligament presented low displacement and stress values. However, the physiological values presented are among those capable to provide orthodontic movement, with compression and tensile area visualization staggered between 0.1 and -0.1 MPa (megapascal). Conclusion: within the limitations of the study, the mini-implants tested showed similar results where the load on the tooth allowed dental displacement (molar mesialization), with a tendency to rotate it, theoretically allowing the second molar to take the location of the first molar. (AU)


Objetivo: analisar a distribuição de tensões em um modelo 3D que simula a mesialização do segundo molar usando dois tipos diferentes de mini-implantes. Material e Métodos: um modelo de osso mandibular foi obtido por recomposição de uma tomografia computadorizada realizada por um software. O osso cortical e trabecular, um segundo molar inferior, ligamento periodontal, tubo ortodôntico, cimento resinoso e os mini-implantes foram projetados e modelados no software Rhinoceros 4.0. As características dos mini-implantes ortodônticos auto perfurantes foram: um com 7 mm de comprimento, 1 mm de secção transmucosa e 1,6 mm de diâmetro e outro com 5 mm de comprimento e 1,5 mm de diâmetro. Para a malha, foram utilizados 235.161 e 224.505 elementos. Esses modelos foram inseridos no bloco ósseo e então submetidos a cargas de 200 cN (centinewton). Os resultados foram calculados e analisados pelo software Ansys 17.0 para verificação qualitativa por meio de mapas de deslocamento e tensões máximas principais. Resultados: foi possível observar que o ligamento periodontal apresentou baixos valores de deslocamento e tensões. Porém, os valores fisiológicos apresentados são capazes de proporcionar movimentação ortodôntica, com visualização da área de compressão e tração escalonada entre 0,1 e -0,1 MPa (megapascal). Conclusão: dentro das limitações do estudo, os mini-implantes testados apresentaram resultados semelhantes onde a carga sobre o dente permitiu o deslocamento dentário (mesialização do molar), com tendência a girá-lo, permitindo teoricamente que o segundo molar ocupe do lugar do primeiro molar (AU)


Subject(s)
Tooth Avulsion , Dental Implants , Finite Element Analysis , Orthodontic Anchorage Procedures , Orthodontic Appliances, Fixed
2.
São José dos Campos; s.n; 2018. 45 p. il., tab., graf..
Thesis in Portuguese | BBO - Dentistry | ID: biblio-986666

ABSTRACT

A perda do primeiro molar é uma situação comum na rotina do consultório e com isso surgem alternativas de tratamento para reabilitação, sendo uma delas, o fechamento de espaço através da mesialização do segundo molar. O uso de miniimplante proporciona ancoragem máxima, costuma ser bem tolerado pelo paciente e se destaca pela facilidade de instalação e remoção, apresentando dessa maneira desempenho clínico bastante favorável. O objetivo desse estudo foi analisar a distribuição de tensões em modelo que simula a mesialização de molar inferior utilizando diferentes tipos de mini-implantes. Embasado no método dos elementos finitos foi obtido modelo ósseo de mandíbula por recomposição de uma tomografia computadorizada realizada pelo software Invesalius (CTI, São Paulo, Brasil). O desenho do segundo molar foi obtido por técnica de recomposição tomográfica. Elementos de ancoragem auto-perfurantes da marca Neodent e também auto-rosqueantes da marca Titanium Fix foram desenhados e modelados por ferramenta de revolução do perfil desenhado no software Rhinoceros 3D, inseridos ao bloco ósseo e então submetidos a cargas de 200 cN. Os resultados foram calculados e analisados pelo programa Ansys 17.0 para verificação por meio da análise de mapas de deslocamento e tensões máximas principais, principalmente do osso cortical e indicaram que, dentro do modelo experimental, o ligamento periodontal apresentou valores baixos de tensão máxima principal, porém dentro dos valores fisiológicos para prover a movimentação, com visualização de áreas de compressão e de tração com escala entre 0,1 a -0,1 MPa. Concluiu-se que a carga testada permite a deslocamento dentário porém com tendência a giroversão(AU)


The loss of the first molar is a common situation in the routine of the dentist and with this treatment alternatives for rehabilitation arises, one of them being the closure of space through the mesialization of the second molar. The use of miniimplants provides maximum anchorage, is well tolerated by the patient and stands out for ease installation and removal, thus presenting a very favorable clinical performance. The objective of this study was to analyze the stress distribution in a model that simulates the inferior molar mesialization using different types of mini- implants. Based on the finite element method, a mandible bone model was obtained by recomposing a computerized tomography performed by invesalius software (CTI, São Paulo, Brazil). The second molar design was obtained by a technique similar to the tomographic recomposition. Neodent self-piercing anchoring elements and also Titanium Fix self-piercing anchors were designed and modeled by a revolution tool in the Rhinoceros 3D software, inserted into the bone block and then subjected to loads of up to 200 cN. The results were calculated and analyzed by the Ansys 17.0 program for verification by means of the analysis of displacement maps and main maximum stresses, mainly of the cortical bone and indicated that, within the experimental model, the periodontal ligament presented low values of main maximum tension, however within the physiological values to provide the movement, with visualization of areas of compression and traction with scale between 0.1 and -0.1 MPa. It was concluded that the load tested allows dental displacement but with a tendency to gyroversion(AU)


Subject(s)
Humans , Finite Element Analysis/statistics & numerical data , Tooth Movement Techniques/methods , Orthodontic Anchorage Procedures/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...