Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oper Dent ; 49(3): 262-272, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632866

ABSTRACT

OBJECTIVES: This study evaluated the influence of hydrogen peroxide (HP) with or without titanium dioxide nanotubes (TiO2) associated with violet LED (VL) regarding: a) the temperature change in the pulp chamber and facial surface; b) the decomposition of HP; and c) the cytotoxicity of the gels on pulp cells. METHODS AND MATERIALS: The experimental groups were: HP35 (35% HP/Whiteness HP, FGM); HP35+VL; HP35T (HP35+TiO2); HP35T+VL; HP7 (7.5% HP/White Class 7.5%, FGM); HP7+VL; HP7T (HP7+TiO2); and HP7T+VL. TiO2 was incorporated into the bleaching gels at 1%. Eighty bovine incisors were evaluated to determine temperature change in 8 experimental groups (n=10/group). A k-type thermocouple was used to evaluate the temperatures of the facial surface and in the pulp chamber, achieved by enabling endodontic access to the palatal surface, throughout the 30-minute session. HP decomposition (n=3) of gels was evaluated by using an automatic potentiometric titrator at the initial and 30-minute time points. Trans-enamel and trans-dentinal cell viability were assessed with a pulp chamber device as well as enamel and dentin discs (n=6), and the treatment extracts (culture medium + diffused components) were collected and applied to MDPC-23 odontoblast cells to evaluate cell viability according to the MTT test. RESULTS: A temperature increase in the pulp chamber was observed in the presence of VL at 30 minutes (p<0.05) (Mann-Whitney test). Also at 30 minutes, HP35 showed greater decomposition in the presence of VL rather than in its absence (p<0.05) (mixed linear models and the Tukey-Kramer test). HP7 provided greater cell viability than the groups treated with HP35 (p<0.05) (generalized linear models test). Cell viability was significantly lower for HP7 in the presence of VL (p<0.05). CONCLUSION: Pulpal temperature increased with VL (maximum of 1.9°C), but did not exceed the critical limit to cause pulp damage. Less concentrated HP resulted in higher cell viability, even when associated with VL.


Subject(s)
Dental Pulp , Hydrogen Peroxide , Tooth Bleaching , Animals , Tooth Bleaching/methods , Dental Pulp/cytology , Dental Pulp/drug effects , Cattle , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Tooth Bleaching Agents/pharmacology , Titanium , Body Temperature , Dental Pulp Cavity/drug effects
2.
J Mech Behav Biomed Mater ; 144: 105993, 2023 08.
Article in English | MEDLINE | ID: mdl-37385128

ABSTRACT

Hydroxyapatite (HA) from bovine bones has been used as a biomaterial in dentistry due to its biocompatibility and bioactivity. However, dense HA bioceramics still present inadequate properties for applications that require high mechanical performance, such as infrastructure. Microstructural reinforcements and control of ceramic processing steps are methods to improve these shortcomings. The present study assessed the effects of polyvinyl butyral (PVB) addition in combination with two sintering methodologies (2-step and conventional), on the mechanical properties of polycrystalline bovine HA bioceramics. The samples were divided into four groups (with 15 samples per group): conventional sintering with binder (HBC) and without binder (HWC) and 2-step sintering with (HB2) and without binder (HW2). HA was extracted from bovine bones, turned into nanoparticles in a ball mill, and subjected to uniaxial and isostatic pressing into discs, according to ISO 6872 standards. All groups were characterized by x-ray diffractometry (XRD), differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and relative density. Besides, mechanical analyses (biaxial flexural strength (BFS) and modulus of elasticity) were also performed. The characterization results demonstrated that adding agglutinants or the sintering method did not affect HA's chemical and structural characteristics. Even so, the HWC group showed the highest mechanical values for BFS and modulus of elasticity being 109.0 (98.0; 117.0) MPa and 105.17 ± 14.65 GPa, respectively. The HA ceramics submitted to conventional sintering and without the addition of binders achieved better mechanical properties than the other groups. The impacts of each variable were discussed and correlated to the final microstructures and mechanical properties.


Subject(s)
Durapatite , Nanoparticles , Animals , Cattle , Durapatite/chemistry , Biocompatible Materials/chemistry , Spectroscopy, Fourier Transform Infrared , Ceramics/chemistry , Surface Properties , Materials Testing
3.
Sci Rep ; 13(1): 4349, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927876

ABSTRACT

Single-axis knee prosthesis is an artificial biomechanical device that provides motion to amputees without the need for assistance appliances. Besides it is mainly composed of metallic materials, the current commercial materials did not group adequate properties for long-term usage or accessible cost. This study produced and characterized Ti-(10 -x)Al-xV (x = 0, 2, and 4 wt.%) alloys for potential use as single-axis knee prostheses. The samples exhibited a gradual decrease in the density values, with proper chemical mixing of the alloying elements on the micro-scale. The phase composition exhibited a primary α phase with a minor α' + ß phase for the Ti-8Al-2V and Ti-6Al-4V samples. Due to their different atomic radius compared to Ti, the addition of alloying elements changed the cell parameters. Their selected mechanical properties (Young's modulus, Vickers microhardness, and damping factor) performed better values than the CP-Ti grade 4. The samples also exhibited good corrosion properties against the simulated marine solution. The tribocorrosion resistance of the samples was better than the reference material, with the wear tracks composed of some tribolayers and grooves resulting from adhesive and abrasive wear. The Ti-10Al alloy displayed the best properties and estimated low cost to be used as single-axis knee prostheses.

4.
J Mech Behav Biomed Mater ; 123: 104690, 2021 11.
Article in English | MEDLINE | ID: mdl-34385065

ABSTRACT

OBJECTIVE: To characterize the effects of aging on the nanomechanical properties and 3D surface topographical parameters of an experimental Zirconia Toughened Alumina (ZTA) composite compared to its respective individual counterpart materials. METHODS: Disk-shaped specimens comprised of three material groups were processed: 1) ZTA 70/30 (70% alumina reinforced with 30% second-generation 3Y-TZP); 2) Zpex (Second-generation 3Y-TZP), and; 3) Al2O3 (High purity Alumina) (n = 10/material, 12 × 1 mm). After synthesis, ceramic powders were pressed, the green-body samples were sintered and polished. Nanoindentation testing was performed to record elastic modulus (E) and hardness (H). Interferometry was utilized to assess 3D surface roughness parameters (Sa, Sq), while X-ray diffraction (XRD) and scanning electron microscope (SEM) assessed the crystalline content and microstructure. All tests were performed before and after simulated aging (134°C, 2.2 bar, 20 h). Statistical analyses were performed using linear mixed-model and least square difference pos-hoc tests (α = 5%). RESULTS: XRD spectra indicated increase of monoclinic peaks for Zpex (~18%) relative to ZTA 70/30 (~2.5%) after aging. Additionally, aging did not affect the surface roughness parameters of ZTA 70/30 and Al2O3, although a significant increase in Sa was recorded for Zpex following aging (~90 nm) (p < 0.001). Al2O3 yielded the highest H and E values (H:21 GPa, E: 254 GPa), followed by ZTA 70/30 (H: 13 GPa, E: 214 GPa) and Zpex (H:11 GPa, E: 167 GPa), all significantly different (p < 0.03). CONCLUSION: ZTA 70/30 and Al2O3 presented high hydrothermal stability with respect to all evaluated variables, where artificial aging significantly increased the monoclinic content and surface roughness of Zpex.


Subject(s)
Aluminum Oxide , Yttrium , Ceramics , Dental Materials , Materials Testing , Surface Properties , Zirconium
5.
Dent Mater ; 36(12): e365-e374, 2020 12.
Article in English | MEDLINE | ID: mdl-32943230

ABSTRACT

OBJECTIVE: To evaluate the effect of aging on the microstructural, mechanical, and optical properties of an experimental zirconia-toughened alumina composite with 80%Al2O3 and 20%ZrO2 (ZTA Zpex) compared to a translucent zirconia (Zpex) and Alumina. METHODS: Disc-shaped specimens were obtained by uniaxial and isostatic pressing the synthesized powders (n = 70/material). After sintering and polishing, half of the specimens underwent aging (20 h, 134 °C, 2.2 bar). Crystalline content and microstructure were evaluated using X-ray diffraction and scanning electron microscopy, respectively. Specimens underwent biaxial flexural strength testing to determine the characteristic stress, Weibull modulus, and reliability. Translucency parameter (TP) and Contrast ratio (CR) were calculated to characterize optical properties. RESULTS: ZTA Zpex demonstrated a compact surface with a uniform dispersion of zirconia particles within the alumina matrix, and typical alumina and zirconia crystalline content. ZTA Zpex and alumina exhibited higher CR and lower TP than Zpex. ZTA Zpex and Zpex showed significantly higher characteristic stress relative to alumina. While aging did not affect optical and mechanical properties of ZTA Zpex and alumina, Zpex demonstrated a significant increase in translucency, as well as a in characteristic stress. Alumina reliability was significantly lower than others at 300 MPa, ZTA Zpex and Zpex reliability decreased at 800 MPa, except for aged Zpex. SIGNIFICANCE: While aging did not affect the mechanical nor the optical properties of ZTA Zpex and alumina, it did alter both properties of Zpex. The results encourage further investigations to engineer ZTA as a framework material for long span fixed dental prostheses specially where darkened substrates, such as titanium implant abutments or endodontically treated teeth, demand masking.


Subject(s)
Aluminum Oxide , Zirconium , Ceramics , Dental Materials , Materials Testing , Reproducibility of Results , Surface Properties
6.
Colloids Surf B Biointerfaces ; 190: 110888, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32114272

ABSTRACT

Surface modification of medical and dental devices, to improve their biocorrosion resistance and biocompatibility, can be achieved with the multidisciplinary field of biomaterials. Nanostructured titanium dioxide (TiO2) has been employed as surface modifier of titanium-based biomaterials because it can prevent the failure of the devices due to wear mechanisms. Moreover, this oxide surface is mostly terminated by hydroxyl groups (-OH) that can be directly functionalized with biomolecules to improve the biocompatibility of these devices. We explored the influence of 3-aminopropyltrimethoxysilane (APTMS) molecules as spacers in bovine serum albumin (BSA) protein immobilization on the physically hydroxylated surfaces of rutile phase TiO2 films grown by reactive Radio Frequency (RF) magnetron sputtering. X-ray Photoelectron Spectroscopy (XPS) was used to examine the adsorption of BSA and APTMS on the hydroxylated surface of TiO2 thin films. For biological tests, BSA was directly immobilized on the film surface and on the APTMS monolayer. Biological analysis found better osteoblast performance considering gene markers related to cell adhesion after interacting directly with the surface modified by the immobilization of BSA, especially on the surface where this protein was immobilized by APTMS. Additionally, we addressed the relevance of this biointerfaces on extracellular matrix remodeling by zymography analysis. Altogether, our data provides new insights about the cellular and molecular mechanisms covering the improved osteoblastic response of the proposed surface modification.


Subject(s)
Osteoblasts/cytology , Propylamines/chemistry , Serum Albumin, Bovine/chemistry , Silanes/chemistry , Titanium/chemistry , 3T3 Cells , Animals , Cattle , Cell Adhesion , Cells, Cultured , Materials Testing , Mice , Particle Size , Surface Properties
7.
J Mech Behav Biomed Mater ; 104: 103659, 2020 04.
Article in English | MEDLINE | ID: mdl-32174417

ABSTRACT

PURPOSE: To synthesize a zirconia-toughened alumina (ZTA) composite with 85% alumina matrix reinforced by 15% zirconia and to characterize its optical and mechanical properties before and after artificial aging, to be compared with a conventional dental zirconia (3Y-TZP). MATERIAL AND METHODS: After syntheses, ZTA and 3Y-TZP powders were uniaxially and isostatically pressed. Green-body samples were sintered and polished to obtain 80 disc-shaped specimens per group (12 × 1 mm, ISO 6872:2015). The crystalline content and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Optical properties were determined by the calculation of contrast ratio (CR) and translucency parameter (TP) using reflectance data. Mechanical properties were assessed by Vickers hardness, fracture toughness and biaxial flexural strength test (BFS). All analyses were conducted before and after artificial aging (20h, 134 °C, 0.22 MPa). Optical parameters and microhardness differences were evaluated through repeated-measures analysis of variance (p < 0.05). BFS data were analyzed using Weibull statistics (95% CI). RESULTS: The synthesis of the experimental ZTA composite was successful, with 98% of theoretical density, as shown in the SEM images. XRD patterns revealed typical zirconia and alumina crystalline phases. ZTA optical properties parameters showed no effect of aging, with a high CR and low TP values denoting a high masking-ability. 3Y-TZP presented lower masking-ability and aging significantly affected its optical properties. ZTA Vickers hardness, fracture toughness and Weibull parameters, including characteristic stress and Weibull modulus were not influenced by aging, while 3Y-TZP presented a significant decrease in characteristic stress and increase in fracture toughness after aging. The ZTA probability of survival for missions of 300 and 500 MPa was estimated at ~99% validating its use for 3-unit posterior fixed dental prostheses (FDP), and no different from conventional 3Y-TZP. At high-stress mission (800 MPa) a significant decrease in probability of survival was observed for aged 3Y-TZP (84%) and for immediate and aged ZTA (73 and 82% respectively). CONCLUSION: The ZTA composite presented a dense microstructure, with preservation of the crystalline content, optical and mechanical properties after artificial aging, which encourages future research to validate its potential use for large span FDP.


Subject(s)
Aluminum Oxide , Dental Prosthesis , Ceramics , Dental Materials , Materials Testing , Surface Properties , Yttrium , Zirconium
8.
Colloids Surf B Biointerfaces ; 164: 370-378, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29413618

ABSTRACT

Staphylococcus epidermidis is a gram-positive bacterium, and one of the most prevalent causes of nosocomial infections due to its strong ability to form biofilms on catheters and surgical implants. Here we explore the antimicrobial properties of Tet-124 peptides, which are part of the innate defense against different multicellular organisms in nature. Two different Tet-124 peptides were immobilized on a polyethylenimine (PEI) film to determine their impact on the antimicrobial properties: KLWWMIRRW (Tet-124), which contains only natural amino acids, and KLWWMIRRWG-(F-Br)-G (F-Br = 4-Bromophenylalanine), a modified Tet-124 sequence with the addition of an unnatural amino acid. The immobilization was obtained as a result of the electrostatic interaction between PEI amino groups and the C-terminal carboxylic groups of tryptophan and glycine amino acids of Tet-124 and Tet-124-Br peptides, respectively. The process was monitored and studied by water contact angle, Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Quartz Crystal Microbalance with Dissipation (QCM-D) measurements. The antibacterial effect of our samples against S. epidermis was evaluated by the spread plate counting method, and cytotoxicity was tested using fibroblast cultures. Our results indicate the feasibility to immobilize electrostatically both Tet-124 peptides for biomedical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Polyethyleneimine/chemistry , Staphylococcus epidermidis/drug effects , Static Electricity , Antimicrobial Cationic Peptides/chemistry , Microbial Sensitivity Tests , Microscopy, Atomic Force , Photoelectron Spectroscopy
9.
Nanotechnol Sci Appl ; 10: 11-21, 2017.
Article in English | MEDLINE | ID: mdl-28096662

ABSTRACT

Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA.

10.
J Nanosci Nanotechnol ; 2(5): 491-4, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12908285

ABSTRACT

Stable Ni nanoparticles embedded in a mesoporous silica material were used as catalysts for the conversion of methane into synthesis gas. This catalyst has the singular properties of controlling the carbon deposition and deactivation of active sites. A comparative study of our nanocomposites with conventional catalysts showed that impregnation material presented a preferential encapsulation and growth of carbon nanotubes on the metal surface. The impregnated catalyst showed a higher tendency for carbon nanotube and whiskers formation.


Subject(s)
Carbon Dioxide/chemistry , Crystallization/methods , Methane/chemistry , Nickel/chemistry , Silicon Dioxide/chemistry , Carbon/chemistry , Carbon Monoxide/chemical synthesis , Catalysis , Hydrogen/chemistry , Manufactured Materials , Microspheres , Molecular Conformation , Nanotubes, Carbon/chemistry , Particle Size , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...