Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202407822, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763897

ABSTRACT

The selective formation of antimony-carbon bonds via organic superbase catalysis under metal- and salt-free conditions is reported. This novel approach utilizes electron-deficient stibine, Sb(C6F5)3, to give upon base-catalyzed reactions with weakly acidic aromatic and heteroaromatic hydrocarbons access to a range of new aromatic and heteroaromatic stibines, respectively, with loss of C6HF5. Also, the significantly less electron-deficient stibines, Ph2SbC6F5 and PhSb(C6F5)2 smoothly underwent base-catalyzed exchange reactions with a range of terminal alkynes to generate the stibines of formulae PhSb(C≡CPh)2, and Ph2SbC≡CR [R = C6H5, C6H4-NO2, COOEt, CH2Cl, CH2NEt2, CH2OSiMe3, Sb(C6H5)2], respectively. These formal substitution reactions proceed with high selectivity as only the C6F5 groups serve as a leaving group to be liberated as C6HF5 upon formal proton transfer from the alkyne. Kinetic studies of the base-catalyzed reaction of Ph2SbC6F5 with phenyl acetylene to form Ph2SbC≡CPh and C6HF5 suggested the empirical rate law to exhibit a first-order dependence with respect to the base catalyst, alkyne and stibine. DFT calculations support a pathway proceeding via a concerted σ-bond metathesis transition state, where the base catalyst activates the Sb-C6F5 bond sequence through secondary bond interactions.

2.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38624122

ABSTRACT

This research examines the nonadiabatic dynamics of cyclobutanone after excitation into the n → 3s Rydberg S2 state. It stems from our contribution to the Special Topic of the Journal of Chemical Physics to test the predictive capability of computational chemistry against unseen experimental data. Decoherence-corrected fewest-switches surface hopping was used to simulate nonadiabatic dynamics with full and approximated nonadiabatic couplings. Several simulation sets were computed with different electronic structure methods, including a multiconfigurational wavefunction [multiconfigurational self-consistent field (MCSCF)] specially built to describe dissociative channels, multireference semiempirical approach, time-dependent density functional theory, algebraic diagrammatic construction, and coupled cluster. MCSCF dynamics predicts a slow deactivation of the S2 state (10 ps), followed by an ultrafast population transfer from S1 to S0 (<100 fs). CO elimination (C3 channel) dominates over C2H4 formation (C2 channel). These findings radically differ from the other methods, which predicted S2 lifetimes 10-250 times shorter and C2 channel predominance. These results suggest that routine electronic structure methods may hold low predictive power for the outcome of nonadiabatic dynamics.

3.
J Comput Chem ; 45(19): 1642, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38545736
4.
Nanoscale ; 16(2): 734-741, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38086686

ABSTRACT

In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.

5.
J Comput Chem ; 45(12): 863-877, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38153839

ABSTRACT

This work provides a detailed multi-component analysis of aromaticity in monosubstituted (X = CH3, C H 2 - , C H 2 + , NH2, NH-, NH+, OH, O-, and O+) and para-homodisubstituted (X = CH3, CH2, NH2, NH, OH, and O) benzene derivatives. We investigate the effects of substituents using single-reference (B3LYP/DFT) and multireference (CASSCF/MRCI) methods, focusing on structural (HOMA), vibrational (AI(vib)), topological (ELFπ), electronic (MCI), magnetic (NICS), and stability (S0-T1 splitting) properties. The findings reveal that appropriate π-electron-donating and π-electron-accepting substituents with suitable size and symmetry can interact with the π-system of the ring, significantly influencing π-electron delocalization. While the charge factor has a minimal impact on π-electron delocalization, the presence of a pz orbital capable of interacting with the π-electron delocalization is the primary factor leading to a deviation from the typical aromaticity characteristics observed in benzene.

6.
J Phys Chem A ; 127(45): 9430-9441, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37920974

ABSTRACT

The phenalene (triangulene) and olympicene molecules belong to the polycyclic aromatic hydrocarbon class, which have attracted substantial technological interest due to their unique electronic properties. Electronic structure calculations serve as a valuable tool in investigating the stability and reactivity of these molecular systems. In the present work, the multireference calculations, namely, the complete active space second-order perturbation theory and multireference averaged quadratic coupled cluster (MR-AQCC), were employed to study the reactivity and stability of phenalene and olympicene isomers, as well as their modified structures where the sp3-carbon at the borders were removed. The harmonic oscillator model of aromaticity (HOMA) and the nucleus-independent chemical shift as geometric and magnetic indexes calculated with density functional theory were utilized to assess the aromaticity of the studied molecules. These indexes were compared with properties such as the excitation energy and natural orbitals occupation. The reactivity analyzed using the HOMA index combined with MR-AQCC revealed the radical character of certain structures as well as the weakening of their aromaticity. Moreover, the results suggest that the removal of sp3-carbon atoms and the addition of hydrogen atoms did not alter the π network and the excitation energies of the phenalene molecules.

7.
Phys Chem Chem Phys ; 25(40): 27380-27393, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37792036

ABSTRACT

The biradicaloid character of different types of polycyclic aromatic hydrocarbons (PAHs) based on small band gaps is an important descriptor to assess their opto-electronic properties. In this work, the unpaired electron densities and numbers of unpaired electrons (NU values) calculated at the high-level multireference averaged quadratic coupled-cluster (MR-AQCC) method are used to develop a test set to assess the capabilities of different biradical descriptors based on density functional theory. A benchmark collection of 29 different compounds has been selected. The DFT descriptors contain primarily the fractional occupation number weighted electron density (FOD) based on simplified thermally-assisted-occupation density functional theory (TAO-DFT) calculations, but the singlet-triplet energy difference and other descriptors denoted as y0 and nLUNO have been considered as well. After adjustment of the literature-recommended finite temperatures, a very good, detailed agreement between unpaired density and FOD analysis is observed which is also manifested in excellent statistical correlations. The other two descriptors also show good correlations even though the absolute scaling is not satisfactory. A new linear fit of FOD data to the MR-AQCC reference values leads to an improved regression relation for determining the recommended finite temperature value in dependence of the Hartree-Fock exchange. This provides the basis for fast and reliable assessment of the biradical character of many classes of PAHs without the need for performing computationally extended MR calculations.

8.
J Phys Chem A ; 127(40): 8287-8296, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37788047

ABSTRACT

The nonplanar character of graphene with a single carbon vacancy (SV) defect is investigated utilizing a pyrene-SV model system by way of complete-active-space self-consistent field theory (CASSCF) and multireference configuration interaction singles and doubles (MR-CISD) calculations. Planar structures were optimized with both methods, showing the 3B1 state to be the ground state with three energetically close states within an energy range of 1 eV. These planar structures constitute saddle points. However, following the out-of-plane imaginary frequency yields more stable (by 0.22 to 0.53 eV) but nonplanar structures of Cs symmetry. Of these, the 1A' structure is the lowest in energy and is strongly deformed into an L shape. Following a further out-of-plane imaginary frequency in the nonplanar structures leads to the most stable but most deformed singlet structure of C1 symmetry. In this structure, a bond is formed between the carbon atom with the dangling bond and a carbon of the cyclopentadienyl ring. This bond stabilizes the structure by more than 3 eV compared to the planar 3B1 structure. Higher excited states were calculated at the MR-CISD level, showing a grouping of four states low in energy and higher states starting around 3 eV.

9.
J Phys Chem A ; 127(46): 9842-9852, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37851528

ABSTRACT

The complete active space self-consistent field (CASSCF) method is a cornerstone in modern excited-state quantum chemistry providing the starting point for most common multireference computations. However, CASSCF, when used with a minimal active space, can produce significant errors (>2 eV) even for the excitation energies of simple hydrocarbons if the states of interest possess ionic character. After illustrating this problem in some detail, we present a diagnostic for ionic character, denoted as Q at, that is readily computed from the transition density. A set of 11 molecules is considered to study errors in vertical excitation energies. State-averaged CASSCF obtains a mean absolute error (MAE) of 0.87 eV for the 34 singlet states considered. We highlight a strong correlation between the obtained errors and the Q at diagnostic, illustrating its power to predict problematic cases. Conversely, using multireference configuration interaction with single and double excitations and Pople's size extensivity correction (MR-CISD+P), excellent results are obtained with an MAE of 0.11 eV. Furthermore, correlations with the Q at diagnostic disappear. In summary, we hope that the presented diagnostic will facilitate reliable and user-friendly multireference computations on conjugated organic molecules.

10.
J Chem Theory Comput ; 19(20): 7056-7076, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37769271

ABSTRACT

The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.

11.
J Comput Chem ; 44(31): 2424-2436, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37638684

ABSTRACT

The alternant polycyclic aromatic hydrocarbon pyrene has photophysical properties that can be tuned with different donor and acceptor substituents. Recently, a D (donor)-Pyrene (bridge)-A (acceptor) system, DPA, with the electron donor N,N-dimethylaniline (DMA), and the electron acceptor trifluoromethylphenyl (TFM), was investigated by means of time-resolved spectroscopic measurements (J. Phys. Chem. Lett. 2021, 12, 2226-2231). DPA shows great promise for potential applications in organic electronic devices. In this work, we used the ab initio second-order algebraic diagrammatic construction method ADC(2) to investigate the excited-state properties of a series of analogous DPA systems, including the originally synthesized DPAs. The additionally investigated substituents were amino, fluorine, and methoxy as donors and nitrile and nitro groups as acceptors. The focus of this work was on characterizing the lowest excited singlet states regarding charge transfer (CT) and local excitation (LE) characters. For the DMA-pyrene-TFM system, the ADC(2) calculations show two initial electronic states relevant for interpreting the photodynamics. The bright S1 state is locally excited within the pyrene moiety, and an S2 state is localized ~0.5 eV above S1 and characterized as a donor to pyrene CT state. HOMO and LUMO energies were employed to assess the efficiency of the DPA compounds for organic photovoltaics (OPVs). HOMO-LUMO and optical gaps were used to estimate power conversion and light-harvesting efficiencies for practical applications in organic solar cells. Considering the systems using smaller D/A substituents, compounds with the strong acceptor NO2 substituent group show enhanced CT and promising properties for use in OPVs. Some of the other compounds with small substituents are also found to be competitive in this regard.

12.
J Phys Chem A ; 127(20): 4440-4454, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37166124

ABSTRACT

A number of conjugated molecules are designed with extremely long single C-C bonds beyond 2.0 Å. Some of the investigated molecules are based on analogues to the recently discovered molecule by Kubo et al. These bonds are analyzed by a variety of indices in addition to their equilibrium bond length including the Wiberg bond index, bond dissociation energy (BDE), and measures of diradicaloid character. All unrestricted DFT calculations indicate no diradical character supported by high-level multireference calculations. Finally, NFOD was computed through fractional orbital density (FOD) calculations and used to compare relative differences of diradicaloid character across twisted molecules without central C-C bonding and those with extremely elongated C-C bonds using a comparison with the C-C bond breaking in ethane. No example of direct C-C bonds beyond 2.4 Å are seen in the computational modeling; however, extremely stretched C-C bonds in the vicinity of 2.2 Å are predicted to be achievable with a BDE of 15-25 kcal mol-1.

13.
J Comput Chem ; 44(6): 755-765, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36373956

ABSTRACT

The chemical stability and the low-lying singlet and triplet excited states of BN-n-acenes (n = 1-7) were studied using single reference and multireference methodologies. From the calculations, descriptors such as the singlet-triplet splitting, the natural orbital (NO) occupations and aromaticity indexes are used to provide structural and energetic analysis. The boron and nitrogen atoms form an isoelectronic pair of two carbon atoms, which was used for the complete substitution of these units in the acene series. The structural analysis confirms the effects originated from the insertion of a uniform pattern of electronegativity difference within the molecular systems. The covalent bonds tend to be strongly polarized which does not happen in the case of a carbon-only framework. This effect leads to a charge transfer between neighbor atoms resulting in a more strengthened structure, keeping the aromaticity roughly constant along the chain. The singlet-triplet splitting also agrees with this stability trend, maintaining a consistent gap value for all molecules. The BN-n-acenes molecules possess a ground state with monoconfigurational character indicating their electronic stability. The low-lying singlet excited states have charge transfer character, which proceeds from nitrogen to boron.

14.
J Am Chem Soc ; 144(51): 23492-23504, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36534052

ABSTRACT

Singlet fission in covalently bound acene dimers in solution is driven by the interplay of excitonic and singlet correlated triplet 1(TT) states with intermediate charge-transfer states, a process which depends sensitively on the solvent environment. We use high-level electronic structure methods to explore this singlet fission process in a linked tetracene dimer, with emphasis on the symmetry-breaking mechanism for the charge-transfer (CT) states induced by low-frequency antisymmetric vibrations and polar/polarizable solvents. A combination of the second-order algebraic diagrammatic construction (ADC(2)) and density functional theory/multireference configuration interaction (DFT/MRCI) methods are employed, along with a state-specific conductor-like screening model (COSMO) solvation model in the former case. This work quantifies, for the first time, an earlier mechanistic proposal [Alvertis et al., J. Am. Chem. Soc. 2019, 141, 17558] according to which solvent-induced symmetry breaking leads to a high-energy CT state which interacts with the correlated triplet state, resulting in singlet fission. An approximate assessment of the nonadiabatic interactions between the different electronic states underscores that the CT states are essential in facilitating the transition from the bright excitonic state to the 1(TT) state leading to singlet fission. We show that several types of symmetry-breaking inter- and intra-fragment vibrations play a crucial role in a concerted mechanism with the solvent environment and with the symmetric inter-fragment torsion, which tunes the admixture of excitonic and CT states. This offers a new perspective on how solvent-induced symmetry-breaking CT can be understood and how it cooperates with intramolecular mechanisms in singlet fission.

15.
J Chem Phys ; 157(15): 154305, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36272808

ABSTRACT

Pyrene fluorescence after a high-energy electronic excitation exhibits a prominent band shoulder not present after excitation at low energies. The standard assignment of this shoulder as a non-Kasha emission from the second-excited state (S2) has been recently questioned. To elucidate this issue, we simulated the fluorescence of pyrene using two different theoretical approaches based on vertical convolution and nonadiabatic dynamics with nuclear ensembles. To conduct the necessary nonadiabatic dynamics simulations with high-lying electronic states and deal with fluorescence timescales of about 100 ns of this large molecule, we developed new computational protocols. The results from both approaches confirm that the band shoulder is, in fact, due to S2 emission. We show that the non-Kasha behavior is a dynamic-equilibrium effect not caused by a metastable S2 minimum. However, it requires considerable vibrational energy, which can only be achieved in collisionless regimes after transitions into highly excited states. This strict condition explains why the S2 emission was not observed in some experiments.

16.
J Chem Theory Comput ; 18(11): 6851-6865, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36194696

ABSTRACT

Newton-X is an open-source computational platform to perform nonadiabatic molecular dynamics based on surface hopping and spectrum simulations using the nuclear ensemble approach. Both are among the most common methodologies in computational chemistry for photophysical and photochemical investigations. This paper describes the main features of these methods and how they are implemented in Newton-X. It emphasizes the newest developments, including zero-point-energy leakage correction, dynamics on complex-valued potential energy surfaces, dynamics induced by incoherent light, dynamics based on machine-learning potentials, exciton dynamics of multiple chromophores, and supervised and unsupervised machine learning techniques. Newton-X is interfaced with several third-party quantum-chemistry programs, spanning a broad spectrum of electronic structure methods.


Subject(s)
Quantum Theory , Software , Molecular Dynamics Simulation
17.
Phys Chem Chem Phys ; 24(3): 1722-1735, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34984424

ABSTRACT

The design of materials with enhanced luminescence properties is a fast-developing field due to the potential applicability of these materials as light-emitting diodes or for bioimaging. A transparent way to enhance the emission properties of interesting molecular candidates is blocking competing and unproductive non-radiative relaxation pathways by the restriction of intramolecular motions. Rationalized functionalization is an important possibility to achieve such restrictions. Using time-dependent density functional theory (TD-DFT) based on the ωB97XD functional and the semiempirical tight-binding method including long-range corrections (TD-LC-DFTB), this work investigates the effect of functionalization of the paradigmatic tetraphenylethylene (TPE) on achieving restricted access to conical intersections (RACI). Photodynamical surface hopping simulations have been performed on a larger set of compounds including TPE and ten functionalized TPE compounds. Functionalization has been achieved by means of electron-withdrawing groups, bulky groups which block the relaxation channels via steric hindrance and groups capable of forming strong hydrogen bonds, which restrict the motion via the formation of hydrogen bond channels. Most of the investigated functionalized TPE candidates show ultrafast deactivation to the ground state due to their still existing structural flexibility, but two examples, one containing -CN and -CF3 groups and a second characterized by a network of hydrogen bonds, have been identified as interesting candidates for creating efficient luminescence properties in solution.

18.
Front Chem ; 10: 1110240, 2022.
Article in English | MEDLINE | ID: mdl-36688043

ABSTRACT

A new type of chirality, orientational chirality, consisting of a tetrahedron center and a remotely anchored blocker, has been discovered. The key structural element of this chirality is characterized by multiple orientations directed by a through-space functional group. The multi-step synthesis of orientational chiral targets was conducted by taking advantage of asymmetric nucleophilic addition, Suzuki-Miyaura cross-coupling and Sonogashira coupling. An unprecedented catalytic species showing a five-membered ring consisting of C (sp2)-Br-Pd-C (sp2) bonds was isolated during performing Suzuki-Miyaura cross-coupling. X-ray diffraction analysis confirmed the species structure and absolute configuration of chiral orientation products. Based on X-ray structures, a model was proposed for the new chirality phenomenon to differentiate the present molecular framework from previous others. DFT computational study presented the relative stability of individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry branch and to have a broad impact on chemical, biomedical, and material sciences in the future.

19.
JACS Au ; 1(10): 1647-1655, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34723268

ABSTRACT

Phenalenyls (PLYs) are important synthons in many functional and electronic materials, which often display favorable molecule-to-molecule overlap for electron or hole transport. They also serve as a prototype for π-stacking pancake bonding based on two-electron multicenter bonding (2e/mc). Unexpected near-doubling of the binding energy is obtained for the positively charged PLY2 + dimer with an effect similar to that seen for the positively charged olympicenyl (OPY) radical dimer. This charge effect is reversed for the perfluorinated (PF) dimers, and the negatively charged perfluorinated (PF) dimers PF-PLY2 - and PF-OPY2 - become strongly bound. Long-range interactions reflect these differences. Also surprising is that in this case the pancake bonding corresponds to single-electron (1e/mc) or a three-electron (3e/mc) multicenter bonding in contrast to the 2e/mc bonding that occurs for the neutral radical dimers. The strong preference for a large intermolecular overlap is maintained in these charged dimers. Importantly, the preference for π-bonding in the charged dimers compared to σ-bonding is strongly enhanced relative to the neutral PLY dimers.

20.
J Phys Chem A ; 125(26): 5765-5778, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34165983

ABSTRACT

3-Hydroxyflavon (3-HF) represents an interesting paradigmatic compound to study excited-state intramolecular proton transfer (ESIPT) and intermolecular (ESInterPT) processes to explain the experimentally observed dual fluorescence in solvents containing protic contamination (water) as opposed to single fluorescence in highly purified nonpolar solvents. In this work, adiabatic on-the-fly molecular dynamics simulations have been performed for isolated 3-HF in an aqueous solution using a polarizable continuum model and including explicit water molecules to represent adequately hydrogen bonding. For the calculation of the excited state, time-dependent density functional theory and the Becke-3-Lee-Yang-Parr (B3LYP) functional have been used. For the isolated 3-HF, ultrafast ESIPT from the enol group to the neighboring keto group has been observed. The calculated PT time of 48 fs agrees well with the experimental value of 39 fs. Addition of one water molecule quenches this ESIPT process but shows an intermolecular concerted or stepwise tautomerization process via the bridging water molecule. Adding a second or more water molecules inhibits this ESInterPT process to a large degree. Most of the trajectories do not show any PT, preserving the initial excited-state enol structure, which is the origin of the violet-blue fluorescence appearing in the solvents contaminated with protic components.

SELECTION OF CITATIONS
SEARCH DETAIL
...