Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37445504

ABSTRACT

The therapy of neuroblastoma relies, amongst other things, on administering chemotherapeutics and radioactive compounds, e.g., the (meta-iodobenzyl)guanidine [131I]mIBG. For special applications (conditioning before stem cell transplantation), busulfan and melphalan (M) proved to be effective. However, both drugs are not used for normal chemotherapy in neuroblastoma because of their side effects. The alkylating drug melphalan contains a (Cl-CH2-CH2-)2N- group in the para-position of the phenyl moiety of the essential amino acid phenylalanine (Phe) and can, therefore, be taken up by virtually all kinds of cells by amino acid transporters. In contrast, mIBG isotopologs are taken up more selectively by neuroblastoma cells via the noradrenaline transporter (NAT). The present study aimed at synthesising and studying hybrid molecules of benzylguanidine (BG) and the alkylating motif of M. Such hybrids should combine the preferential uptake of BGs into neuroblastoma cells with the cytotoxicity of M. Besides the hybrid of BG with the dialkylating group (Cl-CH2-CH2-)2N- bound in the para-position as in M (pMBG), we also synthesised mMBG, which is BG meta-substituted by a (Cl-CH2-CH2-)2N- group. Furthermore, two monoalkylating hybrid molecules were synthesised: the BG para-substituted by a (Cl-CH2-CH2-)NH- group (pM*BG) and the BG meta-substituted by a (Cl-CH2-CH2-)NH- group (mM*BG). The effects of the four new compounds were studied with human neuroblastoma cell lines (SK-N-SH, Kelly, and LS) with regard to uptake, viability, and proliferation by standard test systems. The dialkylating hybrid molecules pMBG and mMBG were at least as effective as M, whereas the monoalkylating hybrid molecules pM*BG and mM*BG were more effective than M. Considering the preferred uptake via the noradrenaline transporter by neuroblastoma cells, we conclude that they might be well suited for therapy.

2.
Chemistry ; 25(8): 1975-1983, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30475422

ABSTRACT

The interplay between the self-assembly and surface chemistry of 2,3,6,7,10,11-hexaaminotriphenylene (HATP) on Cu(111) was complementarily studied by high-resolution scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) under ultra-high vacuum conditions. To shed light on the competitive metal coordination, comparative experiments were carried out on pristine and nickel-covered Cu(111). Directly after room-temperature deposition of HATP onto pristine Cu(111), self-assembled aggregates were observed by STM, and XPS results indicated still protonated amino groups. Annealing up to 200 °C activated the progressive single deprotonation of all amino groups as indicated by chemical shifts of both the N 1s and C 1s core levels in the XP spectra. This enabled the formation of topologically diverse π-d conjugated coordination networks with intrinsic copper adatoms. The basic motif of these networks was a metal-organic trimer, in which three HATP molecules were coordinated by Cu3 clusters, as corroborated by the accompanying density functional theory (DFT) simulations. Additional deposition of more reactive nickel atoms resulted in both chemical and structural changes with deprotonation and formation of bis(diimino)-Ni bonded networks already at room temperature. Even though fused hexagonal metal-coordinated pores were observed, extended honeycomb networks remained elusive, as tentatively explained by the restricted reversibility of these metal-organic bonds.

3.
Nanoscale ; 10(25): 12035-12044, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29905751

ABSTRACT

Even though the surface-assisted dehalogenative coupling constitutes the most abundant protocol in on-surface synthesis, its full potential will only become visible if selectivity issues with polybrominated precursors are comprehensively understood, opening new venues for both organometallic self-assembly and on-surface polymerization. Using the 3,3',5,5'-tetrabromo-2,2',4,4',6,6'-hexafluorobiphenyl (Br4F6BP) at Ag(111), we demonstrate a remote site-selective functionalization at room temperature and a marked temperature difference in double- vs. quadruple activation, both phenomena caused by conformational mechanical effects of the precursor-surface ensemble. The submolecularly resolved structural characterization was achieved by Scanning Tunneling Microscopy, the chemical state was quantitatively assessed by X-ray Photoelectron Spectroscopy, and the analysis of the experimental signatures was supported through first-principles Density-Functional Theory calculations. The non-planarity of the various structures at the surface was specifically probed by additional Near Edge X-ray Absorption Fine Structure experiments. Upon progressive heating, Br4F6BP on Ag(111) shows the following unprecedented phenomena: (1) formation of regular organometallic 1D chains via remote site-selective 3,5'-didebromination; (2) a marked temperature difference in double- vs. quadruple activation; (3) an organometallic self-assembly based on reversibility of C-Ag-C linkages with a thus far unknown polymorphism affording both hexagonal and rectangular 2D networks; (4) extraordinary thermal stability of the organometallic networks. Controlled covalent coupling at the previously Br-functionalized sites was not achieved for the Br4F6BP precursor, in contrast to the comparatively studied non-fluorinated analogue.

4.
Nanoscale ; 9(15): 4995-5001, 2017 Apr 13.
Article in English | MEDLINE | ID: mdl-28383079

ABSTRACT

We report on post-synthetic decoupling of covalent polyphenylene networks from Au(111) by intercalation of a chemisorbed iodine monolayer. The covalent networks were synthesised by on-surface Ullmann polymerization of 1,3-bis(p-bromophenyl)-5-(p-iodophenyl)benzene precursors on Au(111) under ultra-high vacuum conditions. The present study relates to previous work, where successful detachment was demonstrated on Ag(111) by a combination of microscopic and spectroscopic techniques. On the more reactive Ag(111) surfaces, intercalation was readily accomplished by exposing the samples to iodine vapour at room temperature. On more noble Au(111), however, STM, XPS and NEXAFS consistently indicate that the same protocol merely results in co-adsorption of iodine on uncovered surface areas, whereas the covalent networks remain adsorbed on the metal. Yet, performing the iodine exposure at elevated surface temperatures similarly results in detachment of the organic networks via intercalation of an iodine monolayer also on Au(111) as evidenced by characteristic changes in STM. In addition, owing to the high thermal stability of the covalent networks and the comparatively low iodine desorption temperature, the reversibility of the process is demonstrated: sample annealing at 400 °C results in complete desorption of the iodine monolayer, whereby the covalent networks re-adsorb directly on Au(111).

5.
ACS Nano ; 10(12): 10901-10911, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28024384

ABSTRACT

Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB), a 3-fold symmetric, thiol-functionalized aromatic molecule, was studied on Au(111) with the aim of realizing extended Au-thiolate-linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thus, scanning tunneling microscopy (STM) provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray photoelectron spectroscopy (XPS). Directly after room-temperature deposition, only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpinski triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to density functional theory (DFT) simulations. The emergence of Sierpinski triangles is driven by a chemical transformation, i.e., the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures.

6.
Angew Chem Int Ed Engl ; 55(27): 7650-4, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27125328

ABSTRACT

The on-surface synthesis of covalent organic nanosheets driven by reactive metal surfaces leads to strongly adsorbed organic nanostructures, which conceals their intrinsic properties. Hence, reducing the electronic coupling between the organic networks and commonly used metal surfaces is an important step towards characterization of the true material. We demonstrate that post-synthetic exposure to iodine vapor leads to the intercalation of an iodine monolayer between covalent polyphenylene networks and Ag(111) surfaces. The experimentally observed changes from surface-bound to detached nanosheets are reproduced by DFT simulations. These findings suggest that the intercalation of iodine provides a material that shows geometric and electronic properties substantially closer to those of the freestanding network.

7.
Angew Chem Int Ed Engl ; 52(40): 10635-8, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23939782

ABSTRACT

An I for an I: Conditions for the intramolecular carboiodination and the simultaneous convergent intramolecular carboiodination/intermolecular Heck reaction of various diiodoarenes were developed. The ability of the Pd(0)/QPhos catalyst/ligand combination to undergo reversible oxidative addition allows these reactions to proceed well, thus increasing both the appeal and utility of this class of substrates in site-selective cross-coupling reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...