Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 490(7418): 74-6, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-23038467

ABSTRACT

Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x ≈ 0.29). In the cold outskirts of the ß Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of ß Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 ± 0.001) and show that they make up 3.6 ± 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System, even though ß Pictoris is more massive and more luminous and has a different planetary system architecture.

2.
Astrobiology ; 9(1): 1-22, 2009.
Article in English | MEDLINE | ID: mdl-19203238

ABSTRACT

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.


Subject(s)
Exobiology/methods , Extraterrestrial Environment , Origin of Life , Planets , Space Flight , Astronomy , Bayes Theorem , Image Processing, Computer-Assisted , Spacecraft , Spectrophotometry, Infrared , Stars, Celestial
SELECTION OF CITATIONS
SEARCH DETAIL
...