Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513948

ABSTRACT

Silver nanoparticles (AgNPs) are the most widely studied antimicrobial nanomaterials. However, their use in biomedicine is currently limited due to the availability of data that prove the nanosilver toxicity associated primarily with oxidative stress development in mammalian cells. The surface modification of AgNPs is a potent technique of improvement of their biocompatibility. The synthetic or natural compounds that combine zero or low toxicity towards human and animal organisms with inherent antimicrobial properties are the most promising stabilizing agents, their use would also minimize the risks of microorganisms developing resistance to silver-based materials. We used a simple technique to obtain 30-60 nm AgNPs stabilized with benzyldimethyl[3-myristoylamine)-propyl]ammonium chloride monohydrate (BAC)-a well-known active ingredient of many antibacterial drugs. The objective of the study was to assess the AgNPs-BAC entero- and hepatotoxicity to CBF1 mice upon enteral administration. The animals were exposed to 0.8-7.5 mg/kg doses of AgNPs-BAC in the acute and to 0.05-2.25 mg/kg doses of AgNPs-BAC in the subacute experiments. No significant entero- and hepatotoxic effects following a single exposure to doses smaller than 4 mg/kg were detected. Repeated exposure to the doses of AgNPs-BAC below 0.45 mg/kg and to the doses of BAC below 0.5 mg/kg upon enteral administration also led to no adverse effects. During the acute experiment, the higher AgNPs-BAC dose resulted in increased quantities of aminotransferases and urea, as well as the albumin-globulin ratio shift, which are indicative of inflammatory processes. Besides, the relative mass of the liver of mice was smaller compared to the control. During the subacute experiment, the groups treated with the 0.25-2.25 mg/kg dose of AgNPs-BAC had a lower weight gain rate compared to the control, while the groups treated with the 2.25 mg/kg dose of AgNPs-BAC showed statistically significant variations in the blood serum transaminases activity, which indicated hepatosis. It should be noted that the spleen and liver of the animals from the groups treated with the 0.45 and 2.25 mg/kg dose of AgNPs-BAC were more than two times smaller compared to the control. In the intestines of some animals from the group treated with the 2.25 mg/kg dose of AgNPs-BAC small areas of hyperemia and enlarged Peyer's patches were observed. Histological examination confirmed the initial stages of the liver and intestinal wall inflammation.

2.
Biointerphases ; 10(4): 041005, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26489420

ABSTRACT

Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase.


Subject(s)
Enzymes, Immobilized/metabolism , Inorganic Pyrophosphatase/metabolism , Nanodiamonds/chemistry , Adsorption , Chemical Phenomena , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/isolation & purification , Escherichia coli/enzymology , Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/isolation & purification , Protein Binding , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...