Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 58(11): 2994-3002, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-31044904

ABSTRACT

Long-range surface plasmon polariton waveguides consisting of Au stripes integrated with input and output grating couplers embedded in thick Cytop claddings are proposed and demonstrated experimentally. Under the right conditions, grating couplers enable broadside (top) coupling with good efficiency while producing a low level of background light. The scheme does not require high-quality input and output edge facets, and it simplifies optical alignments. We demonstrate coupling using a cleaved bow-tie fiber and a lensed fiber, and we determine the grating coupling efficiencies in both cases over a broad operating wavelength range. The lensed fiber produces a better overlap with the long-range surface plasmon mode of interest and thus results in a better coupling efficiency with essentially no background light as observed on an infrared camera. The measurements are compared with theoretical results obtained using a realistic model of the structures, including out-of-plane curvature in the grating profile resulting from our fabrication process. The coupling scheme along with the surface plasmon waveguides hold strong potential for biosensing applications.

2.
Nano Lett ; 15(4): 2304-11, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25730698

ABSTRACT

We propose a plasmonic surface that produces an electrically controlled reflectance as a high-speed intensity modulator. The device is conceived as a metal-oxide-semiconductor capacitor on silicon with its metal structured as a thin patch bearing a contiguous nanoscale grating. The metal structure serves multiple functions as a driving electrode and as a grating coupler for perpendicularly incident p-polarized light to surface plasmons supported by the patch. Modulation is produced by charging and discharging the capacitor and exploiting the carrier refraction effect in silicon along with the high sensitivity of strongly confined surface plasmons to index perturbations. The area of the modulator is set by the area of the incident beam, leading to a very compact device for a strongly focused beam (∼2.5 µm in diameter). Theoretically, the modulator can operate over a broad electrical bandwidth (tens of gigahertz) with a modulation depth of 3 to 6%, a loss of 3 to 4 dB, and an optical bandwidth of about 50 nm. About 1000 modulators can be integrated over a 50 mm(2) area producing an aggregate electro-optic modulation rate in excess of 1 Tb/s. We demonstrate experimentally modulators operating at telecommunications wavelengths, fabricated as nanostructured Au/HfO2/p-Si capacitors. The modulators break conceptually from waveguide-based devices and belong to the same class of devices as surface photodetectors and vertical cavity surface-emitting lasers.

3.
Nanotechnology ; 25(49): 495202, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25414162

ABSTRACT

The fabrication of a novel plasmonic reflection modulator is presented and described. The modulator includes plasmon excitation using a diffraction grating coupler and is based on a metal-insulator-semiconductor structure on silicon. Fabrication includes a thin thermal oxide, a plasmonic metal surface defined by optical lithography, a metal grating coupler defined by overlaid e-beam lithography, a passivation layer with metalized vias, and electrical contacts. Physical characterization of intermediate structures is provided along with modulation measurements at λ0 ∼ 1550 nm which verify the concept.

SELECTION OF CITATIONS
SEARCH DETAIL
...