Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33955829

ABSTRACT

In 1996, the EU prohibited the use of substances with anabolic action for food-producing animals (EU Directive 96/22/EC). In cases of illegal use of steroid hormones, these substances are usually applied to the animals in the form of esters. The reliable determination of intact steroid esters in animal tissues or body fluids is an unequivocal proof of illegal treatment of animals with EU prohibited anabolic substances. Previously our laboratory developed a sensitive method for determination of oestradiol benzoate and other steroid esters in blood plasma using LC-MS/MS, validated according to Commission Decision 2002/657/EC. This study describes a GC-MS method which has been developed for five oestradiol esters in blood plasma. The sample preparation procedure consisted of protein precipitation, phospholipids removal and cleaning on an alumina column. Oestradiol esters were derivatised with 2, 3, 4, 5, 6-pentafluorobenzoyl chloride (PFBCl) and pyridine in dichloromethane. The measurement of oestradiol esters was carried out by GC-MS/NCI with Cool On-Column injection. Methane was used as a negative chemical ionisation reagent gas. The method for determination of oestradiol esters in blood plasma has been validated according to Commission Decision 2002/657/EC. Decision limits for all analytes were observed below 0.05 ng mL-1. The method is robust for bovine and porcine plasma analyses and can be applied both for screening and confirmatory determination in routine residue monitoring.


Subject(s)
Esters/blood , Estradiol/blood , Animals , Esters/chemistry , Estradiol/chemistry , Gas Chromatography-Mass Spectrometry , Molecular Structure
2.
Anal Chim Acta ; 1095: 226-232, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31864627

ABSTRACT

In this work, new multi-cationic aminopyrene-based labeling tags were designed and synthesized for oligosaccharide analysis by capillary electrophoresis-mass spectrometry (CE-MS). The starting compound, 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt, was modified in order to form a sulfonamide derivative having three tertiary amines in the label structure. The sulfonamide derivative was further methylated to generate three permanently charged quaternary ammonium moieties on the label. The synthesized labels were characterized by NMR, IR, UV/Vis, fluorescence spectroscopy and mass spectrometry. Furthermore, the labels were applied for maltooligosaccharide standards as well as N-linked glycans labeling via reductive amination and followed by CE-MS analysis. The CE-MS analysis of maltooligosaccharides labeled by these newly synthesized labels provided the sub-micromolar limit of detection based on the extracted ion electropherogram signals.

3.
Electrophoresis ; 36(6): 867-74, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25521532

ABSTRACT

The number of charges and/or organic ligands covalently attached to the surface of CdTe quantum dot nanoparticles has been determined from their electrophoretic mobilities measured in capillaries filled with free electrolyte buffers. Three sizes of water soluble CdTe quantum dots with 3-mercaptopropionic and thioglycolic acids as surface ligands were prepared. Their electrophoretic mobilities in different pH and ionic strength values of separation buffers were measured by capillary electrophoresis with laser induced fluorescence detection. The ζ-potentials determined from electrophoretic mobilities using analytical solution of Henry function proposed by Ohshima were in the range from -30 to -100 mV. Charges of QDs were calculated from ζ-potentials. As a result, numbers of organic ligands bonded to QDs surface were determined to be 13, 14, and 15 for the sizes of 3.1, 3.5, and 3.9 nm, respectively. The dissociation constants of organic ligands bonded on QDs surfaces estimated from the dependence of QDs charge on pH of the separation buffer were 7.8 and 7.9 for 3-mercaptopropionic acid and 6.9 for thioglycolic acid.


Subject(s)
Electrophoresis, Capillary/methods , Organic Chemicals/chemistry , Quantum Dots/chemistry , 3-Mercaptopropionic Acid , Hydrogen-Ion Concentration , Osmolar Concentration , Solubility , Static Electricity , Surface Properties , Water
4.
Methods Mol Biol ; 1199: 33-54, 2014.
Article in English | MEDLINE | ID: mdl-25103798

ABSTRACT

In many bioanalytical applications, important molecules such as DNA, proteins, and antibodies are routinely conjugated with fluorescent tags to reach an extraordinary sensitivity of analyses. Semiconductor nanoparticles, quantum dots, have already proved to be suitable components of highly luminescent tags, probes, and sensors with a broad applicability in analytical chemistry. Quantum dots provide high extinction coefficients together with a wide range of excitation wavelengths, size- and composition-tunable emissions, narrow and symmetric emission spectra, good quantum yields, relatively long size-dependent luminescence lifetime, and practically no photobleaching. Most of these properties are superior when compared with conventional organic fluorescent dyes. In this chapter, optimized procedures for the preparation of water-dispersed cadmium telluride (CdTe) quantum dots, conjugating reactions with antibodies, DNA, and macrocycles as well as their analyses by capillary electrophoresis are described. The potential of capillary electrophoresis for fast analyses of nanoparticles, their conjugates with antibodies, and immunocomplexes with targeted antigens is demonstrated on examples.


Subject(s)
Electrophoresis, Capillary/methods , Lasers , Luminescent Measurements/methods , Quantum Dots/analysis , Quantum Dots/chemistry , Cadmium Compounds/chemistry , DNA/analysis , DNA/chemistry , Electrophoresis, Capillary/instrumentation , Fluorescence Resonance Energy Transfer , Immunoassay , Macrocyclic Compounds/chemistry , Semiconductors , Tellurium/chemistry , Water/chemistry
5.
Anal Bioanal Chem ; 406(22): 5389-94, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24948094

ABSTRACT

Caspases are key enzymes activated during the apoptotic machinery. Apoptosis as a way of programmed cell death becomes deregulated in some pathologies including cancer transformations, neurodegenerative, or autoimmune diseases. Most of the methods available for the detection of apoptosis and caspases provide qualitative information only or quantification data as an average from cell populations or cell lysates. Several reports point to the importance of more accurate single-cell analyses in biomedical studies due to heterogeneity at tissue as well as cell level. To meet these requirements, we developed a miniaturized device enabling detection and quantification of active caspase-3/7 in individual cells at a femtogram level (10(-15) g). The active caspase-3/7 detection protocol is based on the bioluminescence chemistry commercially available as a Caspase-Glo™ 3/7 reagent developed by Promega. As a model, we used human stem cells treated by camptothecin to induce apoptosis. Individual apoptotic cells were captured from a culture medium under a microscope and transferred by a micromanipulation system into a detection capillary containing 2 µl of the reagent. Cells without activation by camptothecin served as negative controls. The detection limit of active caspase-3/7 achieved in the miniaturized system was determined as 0.20 and limit of quantification as 0.65 of the amount found in a single apoptotic human stem cell. Such a sensitive method could have a wide application potential in laboratory medicine and related clinically oriented research.


Subject(s)
Apoptosis , Caspase 3/metabolism , Caspase 7/metabolism , Miniaturization/instrumentation , Single-Cell Analysis/instrumentation , Camptothecin/chemistry , Cell Differentiation , Equipment Design , Humans , Inflammation , Luminescence , Micromanipulation , Neural Crest/cytology , Reproducibility of Results , Stem Cells/drug effects , Stem Cells/pathology
6.
Electrophoresis ; 34(12): 1772-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23436689

ABSTRACT

Caspase-3 is an executive caspase, in the central position within apoptotic machinery. Apoptosis as a way of programmed cell death is a physiological process that plays an essential role in the development and homeostasis maintenance; moreover, its deregulations are linked to tumor progression or various autoimmune disorders. Therefore, an investigation of apoptosis pathways on the level of individual cells is not only of biological but also medical importance. In this work we report on the development of a high-sensitivity instrumentation and protocol for detection of active caspase-3 in individual mammalian apoptotic cells. The technology is based on the specific cleavage of modified luciferin by caspase-3, an immediate bioluminescence reaction of free luciferin with luciferase followed by emissions of photons and their detection by photomultiplier tube working in the photon counting regime. Three different instrumental arrangements are compared for the determination of caspase-3 in free cells or tissue samples. Thus, in our best miniaturized system the mean amount as low as about 6.5 fg corresponding to 122 000 molecules of caspase-3 can be detected in individual apoptotic mouse leg cells.


Subject(s)
Apoptosis/physiology , Caspase 3/analysis , Caspase 3/metabolism , Luminescent Measurements/methods , Single-Cell Analysis/methods , Animals , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Humans , Luminescent Measurements/instrumentation , Mice , Pregnancy , Single-Cell Analysis/instrumentation
7.
Electrophoresis ; 32(10): 1217-23, 2011 May.
Article in English | MEDLINE | ID: mdl-21500216

ABSTRACT

Water-soluble CdTe quantum dots (QDs) and their conjugates with antibodies and antigenes were prepared by optimized procedures for applications in CE immunoassays. The QD size of 3.5 nm, excitation spectrum in the range of 300-500 nm, the maximum wavelength of the emission spectrum at 610 nm, quantum yield of 0.25 and luminescence lifetimes in the range of 3.6-43 ns were determined. The 0.1 M solution of TRIS/TAPS (pH 8.3) was found to be the optimum buffer for the separation of the antiovalbumin-ovalbumin immunocomplex from the free conjugates of QDs.


Subject(s)
Electrophoresis, Capillary/methods , Immunoassay/methods , Quantum Dots , Cadmium Compounds/chemistry , Luminescent Measurements , Ovalbumin/chemistry , Particle Size , Tellurium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...