Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(12): e10789, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077512

ABSTRACT

Changing climate and growing human impacts are resulting in globally rising temperatures and the widespread loss of habitats. How species will adapt to these changes is not well understood. The Northern Goshawk (Accipiter gentilis) can be found across the Holarctic but is coming under more intense pressure in many places. Studies of recent populations in Finland and Denmark have shown a marked decline in body size of Northern Goshawks over the past century. Here we investigate long-term changes to Norwegian populations of Northern Goshawk by including material from the Middle Ages. We measured 240 skeletons of modern Northern Goshawks from Norway, Sweden, Denmark and Finland, and 89 Medieval Goshawk bones. Our results show that Norwegian and Swedish female Goshawks have decreased in size over the past century, whilst males showed little decline. Medieval female Goshawks were larger than contemporary females. A decline in forest habitats and a concomitant shift towards smaller prey likely drove a shift to smaller body size in Northern Goshawks. Our study shows that significant body size changes in birds can occur over relatively short time spans in response to environmental factors, and that these effects can sometimes differ between sexes.

2.
J Anim Ecol ; 89(1): 207-220, 2020 01.
Article in English | MEDLINE | ID: mdl-30771254

ABSTRACT

Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.


Subject(s)
Animal Migration , Birds , Animals , Phylogeny , Publication Bias , Seasons
3.
Proc Biol Sci ; 274(1628): 2971-9, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-17878139

ABSTRACT

In 1950, Rensch first described that in groups of related species, sexual size dimorphism is more pronounced in larger species. This widespread and fundamental allometric relationship is now commonly referred to as 'Rensch's rule'. However, despite numerous recent studies, we still do not have a general explanation for this allometry. Here we report that patterns of allometry in over 5300 bird species demonstrate that Rensch's rule is driven by a correlated evolutionary change in females to directional sexual selection on males. First, in detailed multivariate analysis, the strength of sexual selection was, by far, the strongest predictor of allometry. This was found to be the case even after controlling for numerous potential confounding factors, such as overall size, degree of ornamentation, phylogenetic history and the range and degree of size dimorphism. Second, in groups where sexual selection is stronger in females, allometry consistently goes in the opposite direction to Rensch's rule. Taken together, these results provide the first clear solution to the long-standing evolutionary problem of allometry for sexual size dimorphism: sexual selection causes size dimorphism to correlate with species size.


Subject(s)
Biological Evolution , Birds/physiology , Mating Preference, Animal , Sex Characteristics , Animals , Birds/anatomy & histology , Female , Male , Models, Biological , Nesting Behavior
4.
Biol Lett ; 2(2): 206-8, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-17148363

ABSTRACT

In bird species where males incubate but are smaller than females, egg size may be constrained by male body size, and hence ability to incubate the eggs. Using data from 71 such shorebird species, we show that egg size decreases as the degree of female-biased sexual size dimorphism increases, after controlling for female body mass. Relative egg size was not related to mean clutch size. However, when controlling for mating system, the relationship between female-biased sexual size dimorphism and relative egg size was only significant in polyandrous species. The relatively small eggs of socially polyandrous shorebirds have previously been explained as an energy-saving strategy associated with the production of multiple clutches. Our findings suggest that egg size evolution is better explained by male incubation limitation in these birds.


Subject(s)
Biological Evolution , Birds/physiology , Body Size , Ovum/growth & development , Reproduction , Animals , Clutch Size , Female , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...