Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667154

ABSTRACT

We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.


Subject(s)
Biosensing Techniques , Ferrous Compounds , Glucose , Graphite , Metallocenes , Polyethyleneimine , Graphite/chemistry , Metallocenes/chemistry , Ferrous Compounds/chemistry , Polyethyleneimine/chemistry , Glucose/analysis , Electrodes , Oxidation-Reduction
2.
Mikrochim Acta ; 189(11): 410, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36208339

ABSTRACT

A facile and rapid strategy to generate polypyrrole microcapsules is reported. The strategy is compatible with a vortex mixer and with a microfluidic chip for droplet generation, allowing a > 100-fold reduction in particle size. The sub-micron particle sizes obtained can also be tuned to some extent based on the chip geometry. The capsules can be kept stably in solution and can be transferred onto electrochemical devices. As an application example, we casted the polypyrrole capsules generated onto screen-printed electrodes, leading to a significant increase in their electroactive surface area and capacitance. The electrodes were further modified with glucose dehydrogenase (GDH) to fabricate glucose biosensors. The introduction of polypyrrole microcapsules increased the dynamic range of the glucose sensor to ca. 300% compared with that of the electrode without polypyrrole microcapsules. The resulting glucose sensor is operated at a constant applied potential of 0.20 V vs. Ag/AgCl (3 M KCl) in an air-equilibrated electrolyte. At this potential, the sensor showed a linear range from 1.0 to 9.0 mM glucose with a sensitivity of 3.23 µA cm-2 mM-1 (R2 = 0.993). The limit of detection obtained was 0.09 mM, and the reproducibility was 3.6%. The method allows generating polypyrrole microcapsules without surfactants or organic solvents and may enable new opportunities in the design of biosensors, electronic devices, and molecular delivery.


Subject(s)
Polymers , Pyrroles , Capsules , Glucose , Glucose 1-Dehydrogenase , Polymers/chemistry , Pyrroles/chemistry , Reproducibility of Results , Solvents , Surface-Active Agents
3.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807327

ABSTRACT

We develop an electrochemical sensor for the determination of bromhexine hydrochloride (BHC), a widely use mucolytic drug. The sensor is prepared by electrodeposition of cobalt oxides (CoOx) on a glassy carbon electrode modified with carboxylated single-walled carbon nanotubes (SWCNT). A synergistic effect between CoOx and SWCNT is observed, leading to a significant improvement in the BHC electrooxidation current. Based on cyclic voltammetry studies at varying scan rates, we conclude that the electrochemical oxidation of BHC is under mixed diffusion-adsorption control. The proposed sensor allows the amperometric determination of BHC in a linear range of 10-500 µM with a low applied voltage of 0.75 V. The designed sensor provides reproducible measurements, is not affected by common interfering substances, and shows excellent performance for the analysis of BHC in pharmaceutical preparations.


Subject(s)
Bromhexine , Nanotubes, Carbon , Cobalt/chemistry , Electrochemical Techniques , Electrodes , Electroplating , Nanotubes, Carbon/chemistry , Oxides/chemistry
4.
Biosensors (Basel) ; 11(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430194

ABSTRACT

Biofuel cells allow for constructing sensors that leverage the specificity of enzymes without the need for an external power source. In this work, we design a self-powered glucose sensor based on a biofuel cell. The redox enzymes glucose dehydrogenase (NAD-GDH), glucose oxidase (GOx), and horseradish peroxidase (HRP) were immobilized as biocatalysts on the electrodes, which were previously engineered using carbon nanostructures, including multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO). Additional polymers were also introduced to improve biocatalyst immobilization. The reported design offers three main advantages: (i) by using glucose as the substrate for the both anode and cathode, a more compact and robust design is enabled, (ii) the system operates under air-saturating conditions, with no need for gas purge, and (iii) the combination of carbon nanostructures and a multi-enzyme cascade maximizes the sensitivity of the biosensor. Our design allows the reliable detection of glucose in the range of 0.1-7.0 mM, which is perfectly suited for common biofluids and industrial food samples.


Subject(s)
Biosensing Techniques/instrumentation , Enzymes, Immobilized/metabolism , Glucose/analysis , Nanotubes, Carbon/chemistry , Biocatalysis , Bioelectric Energy Sources , Electrodes , Enzymes, Immobilized/chemistry , Glucose 1-Dehydrogenase/chemistry , Glucose 1-Dehydrogenase/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Graphite/chemistry , Horseradish Peroxidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...