Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Lancet Microbe ; 4(9): e670-e682, 2023 09.
Article in English | MEDLINE | ID: mdl-37549680

ABSTRACT

BACKGROUND: Few trials have compared homologous and heterologous third doses of COVID-19 vaccination with inactivated vaccines and mRNA vaccines. The aim of this study was to assess immune responses, safety, and efficacy against SARS-CoV-2 infection following homologous or heterologous third-dose COVID-19 vaccination with either one dose of CoronaVac (Sinovac Biotech; inactivated vaccine) or BNT162b2 (Fosun Pharma-BioNTech; mRNA vaccine). METHODS: This is an ongoing, randomised, allocation-concealed, open-label, comparator-controlled trial in adults aged 18 years or older enrolled from the community in Hong Kong, who had received two doses of CoronaVac or BNT162b2 at least 6 months earlier. Participants were randomly assigned, using a computer-generated sequence, in a 1:1 ratio with allocation concealment to receive a (third) dose of CoronaVac or BNT162b2 (ancestral virus strain), stratified by types of previous COVID-19 vaccination (homologous two doses of CoronaVac or BNT162b2). Participants were unmasked to group allocation after vaccination. The primary endpoint was serum neutralising antibodies against the ancestral virus at day 28 after vaccination in each group, measured as plaque reduction neutralisation test (PRNT50) geometric mean titre (GMT). Surrogate virus neutralisation test (sVNT) mean inhibition percentage and PRNT50 titres against omicron BA.1 and BA.2 subvariants were also measured. Secondary endpoints included geometric mean fold rise (GMFR) in antibody titres; incidence of solicited local and systemic adverse events; IFNγ+ CD4+ and IFNγ+ CD8+ T-cell responses at days 7 and 28; and incidence of COVID-19. Within-group comparisons of boost in immunogenicity from baseline and between-group comparisons were done according to intervention received (ie, per protocol) by paired and unpaired t test, respectively, and cumulative incidence of infection was compared using Kaplan-Meier curves and a proportional hazards model to estimate hazard ratio. The trial is registered with ClinicalTrials.gov, NCT05057169. FINDINGS: We enrolled participants from Nov 12, 2021, to Jan 27, 2022. We vaccinated 219 participants who previously received two doses of CoronaVac, including 101 randomly assigned to receive CoronaVac (CC-C) and 118 randomly assigned to receive BNT162b2 (CC-B) as their third dose; and 232 participants who previously received two doses of BNT162b2, including 118 randomly assigned to receive CoronaVac (BB-C) and 114 randomly assigned to receive BNT162b2 (BB-B) as their third dose. The PRNT50 GMTs on day 28 against ancestral virus were 109, 905, 92, and 816; against omicron BA.1 were 9, 75, 8, and 86; and against omicron BA.2 were 6, 80, 6, and 67 in the CC-C, CC-B, BB-C, and BB-B groups, respectively. Mean sVNT inhibition percentages on day 28 against ancestral virus were 83%, 96%, 87%, and 96%; against omicron BA.1 were 15%, 58%, 19%, and 69%; and against omicron BA.2 were 43%, 85%, 50%, and 90%, in the CC-C, CC-B, BB-C, and BB-B groups, respectively. Participants who had previously received two doses of CoronaVac and a BNT162b2 third dose had a GMFR of 12 (p<0·0001) compared with those who received a CoronaVac third dose; similarly, those who had received two doses of BNT162b2 and a BNT162b2 third dose had a GMFR of 8 (p<0·0001). No differences in CD4+ and CD8+ T-cell responses were observed between groups. We did not identify any vaccination-related hospitalisation within 1 month after vaccination. We identified 58 infections when omicron BA.2 was predominantly circulating, with cumulative incidence of 15·3% and 15·4% in the CC-C and CC-B groups, respectively (p=0·93), and 16·7% and 14·0% in the BB-C and BB-B groups, respectively (p=0·56). INTERPRETATION: Similar levels of incidence of, presumably, omicron BA.2 infections were observed in each group despite very weak antibody responses to BA.2 in the recipients of a CoronaVac third dose. Further research is warranted to identify appropriate correlates of protection for inactivated COVID-19 vaccines. FUNDING: Health and Medical Research Fund, Hong Kong. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Antibodies , Immunity
2.
J Infect Dis ; 227(2): 251-255, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36108092

ABSTRACT

We administered BNT162b2 as a third dose to 314 adults aged ≥30 years who had previously received 2 doses of inactivated vaccine. We collected blood samples before the third dose and again after 1 month and 6 months, and found robust antibody responses to the ancestral strain at 6 months after receipt of BNT162b2. Antibody responses to Omicron BA.2 by live virus neutralization were weaker after the third dose and had declined to a low level by 6 months.


Subject(s)
Antibodies , BNT162 Vaccine , Adult , Humans , Vaccines, Inactivated , Antibodies, Viral
3.
Preprint in English | medRxiv | ID: ppmedrxiv-22279158

ABSTRACT

BackgroundThere are few trials comparing homologous and heterologous third doses of COVID-19 vaccination with inactivated vaccines and mRNA vaccines. MethodsWe conducted an open-label randomized trial in adults >=18 years of age who received two doses of inactivated vaccine (CoronaVac) or mRNA vaccine (BNT162b2) >=6 months earlier, randomised in 1:1 ratio to receive a third dose of either vaccine. We compared the reactogenicity, immunogenicity and cell-mediated immune responses, and assessed vaccine efficacy against infections during follow-up. ResultsWe enrolled 219 adults who previously received two doses of CoronaVac and randomised to CoronaVac ("CC-C", n=101) or BNT162b2 ("CC-B", n=118) third dose; and 232 adults who previously received BNT162b2 and randomised to CoronaVac ("BB-C", n=118) or BNT162b2 ("BB-B", n=114). There were more frequent reports of mild reactions in recipients of third-dose BNT162b2, which generally subsided within 7 days. Antibody responses against the ancestral virus, Omicron BA.1 and BA.2 subvariant by surrogate neutralization and PRNT50 were stronger for the recipients of a third dose of BNT162b2 over CoronaVac irrespective of prior vaccine type. CD4+ T cells boost only occurred in CoronaVac-primed arms. We did not identify differences in CD4+ and CD8+ T cell responses between arms. When Omicron BA.2 was circulating, we identified 58 infections with cumulative incidence of 15.3% and 15.4% in the CC-C and CC-B (p=0.93), and 16.7% and 14.0% in the BB-C and BB-B arms, respectively (p=0.56). ConclusionsSimilar levels of incidence of infection in each arm suggest all third dose combinations may provide similar degrees of protection against prevalent Omicron BA.2 infection, despite very weak antibody responses to BA.2 in the recipients of a CoronaVac third dose. Further research is warranted to identify appropriate correlates of protection for inactivated COVID-19 vaccines.

4.
Genetics ; 159(4): 1727-40, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11779810

ABSTRACT

The maize r locus encodes a transcription factor that regulates the developmental expression of the plant pigment anthocyanin. In an unusual example of gene regulatory diversity, the R-sc (Sc, strong seed color) and the R-p (P, plant color) alleles of r have nonoverlapping tissue specificity and nonhomologous 5' flanking sequences. Heterozygotes between wild-type P and Sc mutants with Ds6 transposable element inserts (r-sc:m::Ds6 or sc:m) produce colored seed derivatives (Sc+) during meiotic recombination. The sc:m alleles with Ds6 insertion in 3' regions of r produce crossover Sc+ derivatives. sc:m alleles with Ds6 elements inserted in 5' regions produce rare Sc+ derivatives borne on nonrecombinant chromosomes. Among 52 such noncrossover Sc+ derivatives, 18 are indistinguishable from the Sc progenitor in phenotype and DNA sequence [Scp(+) alleles]. The remaining 34 derivatives have strong Sc+ expression, including darkly pigmented aleurone, scutellum, coleoptile, and scutellar node [Scp(e) alleles]. The coleoptile and scutellar node phenotypes are unique from either progenitor but are similar to those of some naturally occurring r alleles. Both classes of Sc+ derivatives are explained by gene conversion between the promoter region of Sc:124 and a homologous region located proximal to P. The recombinational intermediate formed between sc:m alleles and P results in deletion of the Ds6 element alone or both Ds6 and a nearby unrelated transposable element-like sequence.


Subject(s)
Alleles , Gene Conversion , Gene Expression Regulation, Plant , Zea mays/genetics , Base Sequence , Chromosome Mapping , Chromosomes/genetics , Crosses, Genetic , DNA Transposable Elements/genetics , Models, Genetic , Molecular Sequence Data , Nucleic Acid Heteroduplexes , Phenotype , Recombination, Genetic , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...