Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38470740

ABSTRACT

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.

2.
Materials (Basel) ; 16(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512281

ABSTRACT

Hybrid materials based on graphitic carbon nitride (g-C3N4) and NTU-9 metal-organic frameworks (MOF) were designed and prepared via solvothermal synthesis and calcination in air. The as-prepared photocatalysts were subsequently characterized using Brunauer-Emmett-Teller (BET) analysis, UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) emission spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The obtained NTU-9/C3N4 composites showed a greatly improved photocatalytic performance for the degradation of toluene in the gas phase under LED visible-light irradiation (λmax = 415 nm). The physicochemical properties and photocatalytic activities of the obtained NTU-9/C3N4 materials were tuned by varying the NTU-9 content (5-15 wt%) and preparation method of the composite materials. For composites prepared by calcination, the photocatalytic activity increased with decreasing NTU-9 content as a result of the formation of TiO2 from the MOFs. The best photocatalytic performance (65% of toluene was photodegraded after 60 min) was achieved by the NTU-9/C3N4 sample prepared via the solvothermal method and containing 15 wt% MOF, which can be attributed to the appropriate amount and stable combination of composite components, efficient charge separation, and enhanced visible-light absorption ability. The photocatalytic mechanisms of the prepared hybrid materials depending on the preparation method are also discussed.

3.
J Colloid Interface Sci ; 640: 578-587, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36878075

ABSTRACT

ZnIn2S4 (ZIS) is one of the widely studied photocatalyst for photocatalytic hydrogen evolution applications due to its prominent visible light response and strong reduction ability. However, its photocatalytic glycerol reforming performance for hydrogen evolution has never been reported. Herein, the visible light driven BiOCl@ZnIn2S4 (BiOCl@ZIS) composite was synthesized by growth of ZIS nanosheets on a template-like hydrothermally pre-prepared wide-band-gap BiOCl microplates using simple oil-bath method to be used for the first time for photocatalytic glycerol reforming for photocatalytic hydrogen evolution (PHE) under visible light irradiation (λ > 420 nm). The optimum amount of BiOCl microplates in the composite was found 4 wt% (4% BiOCl@ZIS) in the presence of in-situ 1 wt% Pt deposition. Then, the in-situ Pt photodeposition optimization studies over 4% BiOCl@ZIS composite showed the highest PHE rate of 674 µmol g-1h-1 with the ultra-low platinum amount (0.0625 wt%). The possible mechanisms behind this improvement can be ascribed to the formation of Bi2S3 low-band-gap semiconductor during BiOCl@ZIS composite synthesis resulting in Z-scheme charge transfer mechanism between ZIS and Bi2S3 upon visible light irradiation. This work expresses not only the photocatalytic glycerol reforming over ZIS photocatalyst but also a solid proof of the contribution of wide-band-gap BiOCl photocatalysts to enhancement of ZIS PHE performance under visible light.

4.
Materials (Basel) ; 15(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499905

ABSTRACT

The article presents a systematic study of Sb-doped Zn1-xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm-3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1-xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.

5.
Article in English | MEDLINE | ID: mdl-35838159

ABSTRACT

Herein, we report the potential-driven electrochemical transformation carried out in basic media of two Ni2+ salen polymers, (poly(NiSalen)s), abbreviated as poly(meso-NiSaldMe) and poly(NiSaltMe). These two polymers, with different configurations of methyl substituents on the imine bridge, were used as precursors for the preparation of electrocatalytically active nickel hydroxide [Ni(OH)2]-type nanoparticles (NPs) anchored in the polymeric matrix as poly[SalenNi(OH)2]. The use of potentiodynamic and potentiostatic electropolymerization conditions for the deposition of polymeric precursors allowed us to control the molecular architecture of poly(NiSalen)s and NPs derived from them. Thus, we obtained different arrangements of NPs embedded in morphologically different poly(Salen) matrixes, indicating their electrocatalytic activity toward ethanol to different extents. Moreover, we found a direct relationship between the electrochemical stability of the poly(NiSalen) precursors operating in the organic solvent-based electrolyte solutions and the easiness of their transformation into Ni(OH)2 NPs operating in the aqueous alkaline media. Poly(NiSalen)s and Ni(OH)2-type NPs were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy.

7.
Dalton Trans ; 51(15): 5962-5976, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35348154

ABSTRACT

In recent years, the growing interest in applying photoelectrocatalysis (PEC) to decompose organic pollutants has resulted in the need to search for new photoelectrode materials with high activity under visible light radiation. The presented research showed an increased photoelectrocatalytic activity under sunlight of Ti/TiO2 sensitized with SnS quantum dots, obtained by the successive ionic layer adsorption and reaction (SILAR) method. The presence of SnS caused the enhanced absorption of visible irradiation and the reduction of recombination of generated charges by a p-n heterojunction created with the TiO2. The highest efficiency of photoelectrocatalytic degradation of anticancer drugs (ifosfamide, 5-fluorouracil, imatinib) was achieved for the SnS-Ti/TiO2 photoelectrode with a SnS quantum dot size from 4 to 10 nm. In addition, a decrease of IF PEC degradation efficiency was observed with increasing pH and with the presence of Cl-, NO3-, HCO3- and organic matter in the treated solution. Studies of the PEC mechanism have shown that drug degradation occurs mainly as a result of the direct and indirect action of photogenerated holes on the SnS-Ti/TiO2 photoelectrode, and the identified degradation products allowed for the presentation of the degradation pathway of IF, 5-FU and IMB. Duckweed (Lemna minor) growth inhibition tests showed no toxicity of the drug solutions after treatment.


Subject(s)
Antineoplastic Agents , Nanotubes , Quantum Dots , Antineoplastic Agents/pharmacology , Fluorouracil/pharmacology , Sunlight , Titanium
8.
Chem Mater ; 34(2): 809-825, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35095188

ABSTRACT

A new indium precursor, namely, indium(II) chloride, was tested as a precursor in the synthesis of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals. This new precursor, being in fact a dimer of Cl2In-InCl2 chemical structure, is significantly more reactive than InCl3, typically used in the preparation of these types of nanocrystals. This was evidenced by carrying out comparative syntheses under the same reaction conditions using these two indium precursors in combination with the same silver (AgNO3) and zinc (zinc stearate) precursors. In particular, the use of indium(II) chloride in combination with low concentrations of the zinc precursor yielded spherical-shaped (D = 3.7-6.2 nm) Ag-In-Zn-S nanocrystals, whereas for higher concentrations of this precursor, rodlike nanoparticles (L = 9-10 nm) were obtained. In all cases, the resulting nanocrystals were enriched in indium (In/Ag = 1.5-10.3). Enhanced indium precursor conversion and formation of anisotropic, longitudinal nanoparticles were closely related to the presence of thiocarboxylic acid type of ligands in the reaction mixture. These ligands were generated in situ and subsequently bound to surfacial In(III) cations in the growing nanocrystals. The use of the new precursor of enhanced reactivity facilitated precise tuning of the photoluminescence color of the resulting nanocrystals in the spectral range from ca. 730 to 530 nm with photoluminescence quantum yield (PLQY) varying from 20 to 40%. The fabricated Ag-In-S and Ag-In-Zn-S nanocrystals exhibited the longest, reported to date, photoluminescence lifetimes of ∼9.4 and ∼1.4 µs, respectively. It was also demonstrated for the first time that ternary (Ag-In-S) and quaternary (Ag-In-Zn-S) nanocrystals could be applied as efficient photocatalysts, active under visible light (green) illumination, in the reaction of aldehydes reduction to alcohols.

9.
J Hazard Mater ; 421: 126751, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34343880

ABSTRACT

One of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO2 nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO2 nanotubes by PbS quantum dots (QD). The ifosfamide (IF) degradation rate constants was twice as higher for PbS-Ti/TiO2 (0.0148 min-1) than for Ti/TiO2 (0.0072 min-1). Our research showed the highest efficiency of PEC degradation of drugs using IIIPbS-Ti/TiO2 made with 3 SILAR cycles (PbS QD size mainly 2-4 nm). The 4 and 6 of SILAR cycles resulted in the aggregation of PbS nanoparticles on the Ti/TiO2 surface and decreased IF PEC degradation rate to 0.0043 and 0.0033 min-1, respectively. Research on PEC mechanism has shown that the drugs are degraded mainly by the activity of photogenerated holes and hydroxyl radicals. In addition, the identified drug intermediates made possible to propose a degradation pathways of anticancer drugs and the ecotoxicity test show no inhibition of Lemna minor growth of treated solutions.


Subject(s)
Antineoplastic Agents , Nanotubes , Quantum Dots , Solar Energy , Titanium
10.
J Agric Food Chem ; 69(48): 14689-14698, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34841873

ABSTRACT

Inspired by the easy intercalation of quinoxaline heterocyclic aromatic amines (HAAs) in double-stranded DNA (dsDNA), we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) as the recognition unit of an impedimetric chemosensor for the selective determination of a 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) HAA. HAAs are generated in meat and fish processed at high temperatures. They are considered to be potent hazardous carcinogens. The MIP film was prepared by potentiodynamic electropolymerization of a pre-polymerization complex of two adenine- and one thymine-substituted bis(2,2'-bithien-5-yl)methane functional monomer molecules with one 7,8-DiMeIQx template molecule, in the presence of the 2,4,5,2',4',5'-hexa(thiophene-2-yl)-3,3'-bithiophene cross-linking monomer, in solution. The as-formed MIP chemosensor allowed for the selective impedimetric determination of 7,8-DiMeIQx in the 47 to 400 µM linear dynamic concentration range with a limit of detection of 15.5 µM. The chemosensor was successfully applied for 7,8-DiMeIQx determination in the pork meat extract as a proof of concept.


Subject(s)
Molecular Imprinting , Pork Meat , Red Meat , Amines , Animals , DNA , Electrodes , Molecularly Imprinted Polymers , Swine
11.
ChemSusChem ; 14(5): 1351-1362, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33453092

ABSTRACT

Solar energy-driven processes for biomass valorization are priority for the growing industrialized society. To address this challenge, efficient visible light-active photocatalyst for the selective oxidation of biomass-derived platform chemical is highly desirable. Herein, selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) was achieved by visible light-driven photocatalysis over titania. Pristine titania is photocatalytically inactive under visible light, so an unconventional approach was employed for the visible light (λ=515 nm) sensitization of titania via a formation of a visible light-absorbing complex of HMF (substrate) on the titania surface. Surface-complexation of HMF on titania mediated ligand-to-metal charge transfer (LMCT) under visible light, which efficiently catalyzed the oxidation of HMF to DFF. A high DFF selectivity of 87 % was achieved with 59 % HMF conversion after 4 h of illumination. The apparent quantum yield obtained for DFF production was calculated to be 6.3 %. It was proposed that the dissociative interaction of hydroxyl groups of HMF and the titania surface is responsible for the surface-complex formation. When the hydroxyl groups of titania were modified via surface-fluorination or calcination the oxidation of HMF was inhibited under visible light, signifying that hydroxyl groups are decisive for photocatalytic activity.

12.
RSC Adv ; 11(55): 34996-35010, 2021 10 25.
Article in English | MEDLINE | ID: mdl-35494738

ABSTRACT

Developing functional materials from biomass is a significant research subject due to its unique structure, abundant availability, biodegradability and low cost. A series of chitosan-lignin (CL) composites were prepared through a hydrothermal method by varying the weight ratio of chitosan and lignin. Subsequently, these CL composites were combined with titania (T) to form a nanocomposite (T/CL) using sol-gel and hydrothermal based methods. T/CL nanocomposites exhibited improved photocatalytic performance in comparison with sol-gel and hydrothermally prepared pristine titania (SGH-TiO2), towards the selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (Bnald) under UV (375 nm) and visible light (515 nm). More specifically, the 75T/CL(25 : 75) nanocomposite (a representative photocatalyst from the 75T/CL nanocomposite series) showed very high selectivity (94%) towards Bnald at 55% BnOH conversion under UV light. Whereas, SGH-TiO2 titania exhibited much lower (68%) selectivity for Bnald at similar BnOH conversion. Moreover, the 75T/CL(25 : 75) nanocomposite also showed excellent Bnald selectivity (100%) at moderate BnOH conversion (19%) under visible light. Whereas, SGH-TiO2 did not show any activity for BnOH oxidation under visible light. XPS studies suggest that the visible light activity of the 75T/CL(25 : 75) nanocomposite is possibly related to the doping of nitrogen into titania from chitosan. However, according to UV-visible-DRS results, no direct evidence pertaining to the decrease in band-gap energy of titania was found upon coupling with the CL composite and the visible light activity was attributed to N-doping of titania. Overall, it was found that T/CL nanocomposites enhanced the photocatalytic performance of titania via improved light harvesting and higher selectivity through mediation of active radical species.

13.
RSC Adv ; 11(61): 38727-38738, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493210

ABSTRACT

The structural and chemical modification of TiO2 nanotubes (NTs) by the deposition of a well-controlled Au deposit was investigated using a combination of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), Raman measurements, UV-Vis spectroscopy and photoelectrochemical investigations. The fabrication of the materials focused on two important factors: the deposition of Au nanoparticles (NPs) in UHV (ultra high vacuum) conditions (1-2 × 10-8 mbar) on TiO2 nanotubes (NTs) having a diameter of ∼110 nm, and modifying the electronic interaction between the TiO2 NTs and Au nanoparticles (NPs) with an average diameter of about 5 nm through the synergistic effects of SMSI (Strong Metal Support Interaction) and LSPR (Local Surface Plasmon Resonance). Due to the formation of unique places in the form of "hot spots", the proposed nanostructures proved to be photoactive in the UV-Vis range, where a characteristic gold plasmonic peak was observed at a wavelength of 580 nm. The photocurrent density of Au deposited TiO2 NTs annealed at 650 °C was found to be much greater (14.7 µA cm-2) than the corresponding value (∼0.2 µA cm-2) for nanotubes in the as-received state. The IPCE (incident photon current efficiency) spectral evidence also indicates an enhancement of the photoconversion of TiO2 NTs due to Au NP deposition without any significant change in the band gap energy of the titanium dioxide (E g ∼3.0 eV). This suggests that a plasmon-induced resonant energy transfer (PRET) was the dominant effect responsible for the photoactivity of the obtained materials.

14.
Bioelectrochemistry ; 138: 107695, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33296790

ABSTRACT

A molecularly imprinted polymer (MIP) film based electrochemical sensor for selective determination of tyramine was devised, fabricated, and tested. Tyramine is generated in smoked and fermented food products. Therefore, it may serve as a marker of the rottenness of these products. Importantly, intake of large amounts of tyramine by patients treated with monoamine oxidase (MAO) inhibitors may lead to a "cheese effect", namely, a dangerous hypertensive crisis. The limit of detection at S/N = 3 of the chemosensor, in both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) determinations, with the use of the Fe(CN)64-/Fe(CN)63- redox probe, was 159 and 168 µM tyramine, respectively. The linear dynamic concentration range was 290 µM to 2.64 mM tyramine. The chemosensor was highly selective with respect to the glucose, urea, and creatinine interferences. Its DPV determined apparent imprinting factor was 5.6. Moreover, the mechanism of the "gate effect" in the operation of the polymer film-coated electrodes was unraveled.


Subject(s)
Electrochemistry/instrumentation , Limit of Detection , Molecularly Imprinted Polymers/chemistry , Tyramine/analysis , Electrodes , Linear Models , Oxidation-Reduction , Tyramine/chemistry
15.
ACS Omega ; 5(37): 23909-23918, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32984711

ABSTRACT

Stable polymeric materials with embedded nano-objects, retaining their specific properties, are indispensable for the development of nanotechnology. Here, a method to obtain Pt, Pd, Au, and Ag nanoparticles (ca. 10 nm, independent of the metal) by the reduction of their ions in pectin, in the absence of additional reducing agents, is described. Specific interactions between the pectin functional groups and nanoparticles were detected, and they depend on the metal. Bundles and protruding nanoparticles are present on the surface of nanoparticles/pectin films. These films, deposited on the electrode surface, exhibit electrochemical response, characteristic for a given metal. Their electrocatalytic activity toward the oxidation of a few exemplary organic molecules was demonstrated. In particular, a synergetic effect of simultaneously prepared Au and Pt nanoparticles in pectin films on glucose electro-oxidation was found.

16.
Materials (Basel) ; 13(18)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932666

ABSTRACT

The design of an active, stable and efficient photocatalyst that is able to be used for hydrogen production is of great interest nowadays. Therefore, four methods of AgTaO3 perovskite synthesis, such as hydrothermal, solvothermal, sol-gel and solid state reactions, were proposed in this study to identify the one with the highest hydrogen generation efficiency by the water splitting reaction. The comprehensive results clearly show that the solid state reaction (SSR) led to the obtainment of a sample with an almost seven times higher photocatalytic activity than the other methods. Furthermore, four ionic liquids, all possessing nitrogen in the form of organic cations (two imidazoliums with different anions, ammonium and tetrazolium), were used for the first time to prepare composites consisting of AgTaO3 modified with IL and Pt, simultaneously. The effect of the ionic liquids (ILs) and Pt nanoparticles' presence on the structure, morphology, optical properties, elemental composition and the effectiveness of the hydrogen generation was investigated and discussed. The morphology investigation revealed that the AgTaO3 photocatalysts with the application of [OMIM]-cation based ILs created smaller granules (<500 nm), whereas [TBA] [Cl] and [TPTZ] [Cl] ILs caused the formation of larger particles (up to 2 µm). We found that various ILs used for the synthesis did not improve the photocatalytic activity of the obtained samples in comparison with pristine AgTaO3. It was detected that the compound with the highest ability for hydrogen generation under UV-Vis irradiation was the AgTaO3_0.2% Pt (248.5 µmol∙g-1), having an almost 13 times higher efficiency in comparison with the non-modified pristine sample. It is evidenced that the enhanced photocatalytic activity of modified composites originated mainly from the presence of the platinum particles. The mechanism of photocatalytic H2 production under UV-Vis light irradiation in the presence of an AgTaO3_IL_Pt composite in the water splitting reaction was also proposed.

17.
J Hazard Mater ; 398: 123250, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32768851

ABSTRACT

Despite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0 ± 1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on the morphology, optical properties, structure and surface chemistry of the nanocomposites was systematically studied. Photocatalytic tests revealed that the 1%AIS@ZnO NPy sample reported the highest photoactivity for phenol degradation in aqueous phase (92 % after one hour of irradiation, λ > 350 nm) that was 4 and 68 times the reported for bare ZnO NPy and AIS QDs, respectively. Accordingly, the maximum photocatalytic hydrogen evolution, under UV-vis light, for the same sample corresponded to 17 and 21 times the estimated for pristine ZnO NPy and AIS QDs, respectively. Hence, the AIS QDs - ZnO system has been applied in the photocatalytic field for the first time in this work and a synergetic effect was confirmed owing to a strong heterojunction formation between both semiconductors that allows an enhanced charge carrier separation, improving the photocatalytic activity.

18.
ACS Omega ; 5(15): 8647-8658, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337428

ABSTRACT

The nitrogen doping of titanium dioxide nanotubes (TiO2 NTs) was investigated as a result of well-controlled plasma nitriding of TiO2 NTs at a low temperature. This way of nitrogen doping is proposed as an alternative to chemical/electrochemical methods. The plasma nitriding process was performed in a preparation chamber connected to an X-ray photoelectron spectroscopy (XPS) spectrometer, and the nitrogen-doped TiO2 NTs were next investigated in situ by XPS in the same ultrahigh vacuum (UHV) system. The collected high-resolution (HR) XPS spectra of N 1s, Ti 2p, O 1s, C 1s, and valence band (VB) revealed the formation of chemical bonds between titanium, nitrogen, and oxygen atoms as substitutional or interstitial species. Moreover, the results provided a characterization of the electronic states of N-TiO2 NTs generated by various plasma nitriding and annealing treatments. The VB XPS spectrum showed a reduction in the TiO2 band gap of about 0.6 eV for optimal nitriding and heat-treated conditions. The TiO2 NTs annealed at 450 or 650 °C in air (ex situ) and nitrided under UHV conditions were used as reference materials to check the formation of Ti-N bonds in the TiO2 lattice with a well-defined structure (anatase or a mixture of anatase and rutile). Scanning electron microscopy microscopic observations of the received materials were used to evaluate the morphology of the TiO2 NTs after each step of the nitriding and annealing treatments.

19.
ACS Sens ; 5(1): 118-126, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31845570

ABSTRACT

Homogenous nanostructuration of molecularly imprinted polymer (MIP) films for follicle-stimulating hormone (FSH)-sensing was achieved by using optimized colloidal crystals as a hard mold. Introduction of a heating step after assembling colloidal crystals of silica beads promoted their adhesion. Thus, precise assembling of beads was not disturbed during further multisteps of surface imprinting, and crack-free hexagonal packing was maintained. Scanning electron microscopy imaging confirmed hexagonal packing of silica colloidal crystals as well as homogenous nanostructuration in MIP films. FSH immobilization over silica beads and later its derivatization with electroactive functional monomers was confirmed by X-ray photoelectron spectroscopy analysis. The nanostructured molecular recognition films prepared in this way were combined with an electrochemical transducer in order to design a capacitive impedimetry-based chemosensing system. It was tested for the determination of FSH in the range from 0.1 fM to 100 pM in 10 mM 2-(N-morpholino) ethane sulfonic acid buffer (pH = 4.2). The detection limit of the chemosensor was 0.1 fM, showing a high selectivity with respect to common protein interferences as well as other protein hormones of the gonadotropin family.


Subject(s)
Biosensing Techniques/methods , Follicle Stimulating Hormone/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Humans
20.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31546990

ABSTRACT

One of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (Bi2S3) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method. Transmission electron microscopy (TEM) analysis revealed that quantum dots with a size in the range of 6-11 nm were located both inside and on the external surfaces of the Ta2O5 NTs. The effect of the anodization time and annealing conditions, as well as the effect of cycle numbers in the SILAR method, on the surface properties and photoactivity of Ta2O5 nanotubes and Bi2S3/Ta2O5 composites have been investigated. The Ta2O5 nanotubes decorated with Bi2S3 QDs exhibit high photocatalytic activity in the toluene degradation reaction, i.e., 99% of toluene (C0 = 200 ppm) was degraded after 5 min of UV-Vis irradiation. Therefore, the proposed anodic oxidation of tantalum (Ta) foil followed by SILAR decorating allows a photocatalytic surface, ready to use for pollutant degradation in the gas phase, to be obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...