Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 566(7744): 350-353, 2019 02.
Article in English | MEDLINE | ID: mdl-30787452

ABSTRACT

During its 1989 flyby, the Voyager 2 spacecraft imaged six small moons of Neptune, all with orbits well interior to that of the large, retrograde moon Triton1. Along with a set of nearby rings, these moons are probably younger than Neptune itself; they formed shortly after the capture of Triton and most of them have probably been fragmented multiple times by cometary impacts1-3. Here we report Hubble Space Telescope observations of a seventh inner moon, Hippocamp. It is smaller than the other six, with a mean radius of about 17 kilometres. We also observe Naiad, Neptune's innermost moon, which was last seen in 1989, and provide astrometry, orbit determinations and size estimates for all the inner moons, using an analysis technique that involves distorting consecutive images to compensate for each moon's orbital motion and that is potentially applicable to searches for other moons and exoplanets. Hippocamp orbits close to Proteus, the outermost and largest of these moons, and the orbital semimajor axes of the two moons differ by only ten per cent. Proteus has migrated outwards because of tidal interactions with Neptune. Our results suggest that Hippocamp is probably an ancient fragment of Proteus, providing further support for the hypothesis that the inner Neptune system has been shaped by numerous impacts.

2.
Science ; 325(5941): 709, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19661420

ABSTRACT

Ten days of photometric data were obtained during the commissioning phase of the Kepler mission, including data for the previously known giant transiting exoplanet HAT-P-7b. The data for HAT-P-7b show a smooth rise and fall of light from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 parts per million in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in photometric precision to the detection of a transiting Earth-size planet for which the mission was designed.

3.
Nature ; 409(6816): 23-4, 2001 Jan 04.
Article in English | MEDLINE | ID: mdl-11343091
4.
Proc Natl Acad Sci U S A ; 97(23): 12405-6, 2000 Nov 07.
Article in English | MEDLINE | ID: mdl-11035782

ABSTRACT

The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

5.
Nature ; 402(6761 Suppl): C11-4, 1999 Dec 02.
Article in English | MEDLINE | ID: mdl-10591221
6.
Icarus ; 91: 76-92, 1991.
Article in English | MEDLINE | ID: mdl-11538105

ABSTRACT

Observations and experimental evidence are presented to support the hypothesis that high-speed impact into a parent body regolith can best explain certain textures and compositions observed for rims on some chondrules. A study of 19 interclastic rimmed chondrules in the Weston (H 3/4) ordinary chondrite shows that two main rim types are present on porphyritic olivine-pyroxene (POP) and porphyritic pyroxene (PP) chondrules: granular and opaque rims. Granular rims are composed of welded, fine-grained host chondrule fragments. Bulk compositions of granular rims vary among chondrules, but each rim is compositionally dependent on that of the host chondrule. Opaque rims contain mineral and glass compositions distinctly different from those of the host, partially reacted chondrule mantle components, and some matrix grains. Opaque rims are greatly enriched in FeO (up to 63 wt%). The original chondrule pyroxene compositional zonation patterns and euhedral grain outlines are discontinuous at the chondrule/rim interface. Opaque rims are dominated by fayalitic olivine (Fa92-56), with high Al2O3 content (0.78-3.15%), which makes them distinctly different from primary olivine, but similar to Fe-olivine in chondrule rims of other meteorites. Thin zones of chondrule minerals adjacent to the present rims are intermediate in FeO content between the Mg-rich interior and the Fe-rich rim, which indicates a reaction relationship. Regardless of conclusions drawn regarding other types of rims, granular and opaque rim characteristics appear to be inconsistent with nebular condensation, in that host and matrix fragments are included within the rim. We have initiated a series of experiments, using the Ames two-stage light gas gun, to investigate the hypothesis that the Weston chondrule rims are the result of thermal and mechanical alteration upon impact into a low-density medium. Clusters of approximately 200-micron-sized silicate particles were fired into aerogel (density = 0.1 g cm-3) at velocities of 5.6, 4.7, and 2.2 km sec-1. Recovered grains show characteristics that range from fragmented projectile grains mixed with melted aerogel that nearly rim the grains to grains that have melted aerogel clumps mixed with partially melted projectile. These experimental results demonstrate that rim-like thermal and mechanical alteration of projectiles can result from a high-velocity encounter with a low-density target. Therefore, experiments using appropriately chosen projectile and target materials can provide a test of the hypothesis that chondrule rims common to Weston and possibly other ordinary chondrites were formed by such a process.


Subject(s)
Iron Compounds/chemistry , Magnesium Compounds/chemistry , Minerals/chemistry , Silicates/chemistry , Solar System , Astronomical Phenomena , Astronomy , Crystallization , Geological Phenomena , Geology , Glass , Minor Planets , Models, Theoretical
7.
Science ; 241(4866): 690-4, 1988 Aug 05.
Article in English | MEDLINE | ID: mdl-17839081

ABSTRACT

The most prominent oscillatory feature observed in the Voyager 1 radio occultation of Saturn's rings is identified as a one-armed spiral bending wave excited by Titan's -1:0 nodal inner vertical resonance. Ring partides in a bending wave move in coherently inclined orbits, warping the local mean plane of the rings. The Titan -1:0 wave is the only known bending wave that propagates outward, away from Saturn, and the only spiral wave yet observed in which the wave pattern rotates opposite to the orbital direction of the ring particles. It is also the first bending wave identified in ring C. Modeling the observed feature with existing bending wave theory gives a surface mass density of approximately 0.4 g/cm(2) outside the wave region and a local ring thickness of [unknown]5 meters, and suggests that surface mass density is not constant in the wave region.

8.
Science ; 222(4619): 57-60, 1983 Oct 07.
Article in English | MEDLINE | ID: mdl-17810092

ABSTRACT

The Voyager spacecraft observed a narrow, eccentric ringlet in the Maxwell gap (1.45 Saturn radii) in Saturn's rings. Intercomparison of the Voyager imaging, photopolarimeter, ultraviolet spectrometer, and radio science observations yields results not available from individual observations. The width of the ringlet varies from about 30 to about 100 kilometers, its edges are sharp on a radial scale < 1 kilometer, and its opacity exhibits a double peak near the center. The shape and width of the ringlet are consistent with a set of uniformly precessing, confocal ellipses with foci at Saturn's center of mass. The ringlet precesses as a unit at a rate consistent with the known dynamical oblateness of Saturn; the lack of differential precession across the ringlet yields a ringlet mass of about 5 x 10(18) grams. The ratio of surface mass density to particle cross-sectional area is about five times smaller than values obtained elsewhere in the Saturn ring system, indicating a relatively larger fraction of small particles. Also, comparison of the measured transmission of the ringlet at radio, visible, and ultraviolet wavelengths indicates that about half of the total extinction is due to particles smaller than 1 centimeter in radius, in contrast even with nearby regions of the C ring. However, the color and brightness of the ringlet material are not measurably different from those of nearby C ring particles. We find this ringlet is similar to several of the rings of Uranus.

9.
Science ; 218(4572): 521, 1982 Nov 05.
Article in English | MEDLINE | ID: mdl-17842040
SELECTION OF CITATIONS
SEARCH DETAIL
...