Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Microdevices ; 20(1): 12, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29308571

ABSTRACT

In this work, a novel force equilibrium method called distributed dielectrophoretic cytometry (2DEP cytometry) was developed. It uses a dielectrophoresis (DEP)-induced vertical translation of live cells in conjunction with particle image velocimetry (PIV) in order to measure probabilistic distribution of DEP forces acting on an entire cell population. The method is integrated in a microfluidic device. The bottom of the microfluidic channel is lined with an interdigitated electrode array. Cells passing through the micro-channel are acted on by sedimentation forces, while DEP forces either oppose sedimentation, support sedimentation, or neither, depending on the dielectric (DE) signatures of the cells. The heights at which cells stabilize correspond to their DE signature and are measured indirectly using PIV, which enables simultaneous and high-throughput collection of hundreds of single-cell responses in a single PIV frame. The system was validated using polystyrene micro-particles. Preliminary experimental data quantify the DE signatures of immortalized myelogenous leukemia cell lines K562 and KG1. We show DEP-induced cell translation along the parabolic velocity profile can be measured by PIV with sub-micron precision, enabling identification of individual cell DE signatures. DE signatures of the selected cell lines are distinguishable. Throughput of the method enables measurement of DE signatures at 10 different frequencies in almost real time.


Subject(s)
Flow Cytometry/instrumentation , Flow Cytometry/methods , Computer Simulation , Electric Stimulation , Electrophoresis/instrumentation , Equipment Design , Humans , K562 Cells , Lab-On-A-Chip Devices , Stochastic Processes
2.
Faraday Discuss ; 172: 47-59, 2014.
Article in English | MEDLINE | ID: mdl-25259508

ABSTRACT

Boron doped nanocrystalline diamond is known as a remarkable material for the fabrication of sensors, taking advantage of its biocompatibility, electrochemical properties, and stability. Sensors can be fabricated to directly probe physiological species from biofluids (e.g. blood or urine), as will be presented. In collaboration with electrophysiologists and biologists, the technology was adapted to enable structured diamond devices such as microelectrode arrays (MEAs), i.e. common electrophysiology tools, to probe neuronal activity distributed over large populations of neurons or embryonic organs. Specific MEAs can also be used to build neural prostheses or implants to compensate function losses due to lesions or degeneration of parts of the central nervous system, such as retinal implants, which exhibit real promise as biocompatible neuroprostheses for in vivo neuronal stimulations. New electrode geometries enable high performance electrodes to surpass more conventional materials for such applications.


Subject(s)
Biotechnology/instrumentation , Boron/chemistry , Diamond/chemistry , Electrophysiology/instrumentation , Visual Prosthesis , Biotechnology/methods , Electrochemical Techniques , Electrophysiology/methods , Microelectrodes , Neurons/physiology , Retina/physiology
3.
Biosens Bioelectron ; 60: 311-7, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24835406

ABSTRACT

Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications.


Subject(s)
Biomimetic Materials , Diamond/chemistry , Dielectric Spectroscopy/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Odorants/analysis , Receptors, Odorant/chemistry , Smell , Equipment Design , Equipment Failure Analysis , Protein Binding , Protein Interaction Mapping/instrumentation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...