Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biomed Pharmacother ; 177: 117057, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38976957

ABSTRACT

Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.

2.
Blood ; 143(24): 2474-2489, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38498036

ABSTRACT

ABSTRACT: Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.


Subject(s)
Killer Cells, Natural , Leukemia, Large Granular Lymphocytic , STAT5 Transcription Factor , Animals , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Mice , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Humans , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/pathology , Disease Models, Animal , Cell Lineage/genetics , Mutation , Mice, Transgenic
3.
Cell Death Dis ; 12(11): 991, 2021 10 23.
Article in English | MEDLINE | ID: mdl-34689158

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive malignant disease that is responsible for approximately 15% of breast cancers. The standard of care relies on surgery and chemotherapy but the prognosis is poor and there is an urgent need for new therapeutic strategies. Recent in silico studies have revealed an inverse correlation between recurrence-free survival and the level of cyclin-dependent kinase 8 (CDK8) in breast cancer patients. CDK8 is known to have a role in natural killer (NK) cell cytotoxicity, but its function in TNBC progression and immune cell recognition or escape has not been investigated. We have used a murine model of orthotopic breast cancer to study the tumor-intrinsic role of CDK8 in TNBC. Knockdown of CDK8 in TNBC cells impairs tumor regrowth upon surgical removal and prevents metastasis. In the absence of CDK8, the epithelial-to-mesenchymal transition (EMT) is impaired and immune-mediated tumor-cell clearance is facilitated. CDK8 drives EMT in TNBC cells in a kinase-independent manner. In vivo experiments have confirmed that CDK8 is a crucial regulator of NK-cell-mediated immune evasion in TNBC. The studies also show that CDK8 is involved in regulating the checkpoint inhibitor programmed death-ligand 1 (PD-L1). The CDK8-PD-L1 axis is found in mouse and human TNBC cells, underlining the importance of CDK8-driven immune cell evasion in these highly aggressive breast cancer cells. Our data link CDK8 to PD-L1 expression and provide a rationale for investigating the possibility of CDK8-directed therapy for TNBC.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Killer Cells, Natural/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Humans , Mice , Triple Negative Breast Neoplasms/pathology
4.
Clin Neurol Neurosurg ; 209: 106888, 2021 10.
Article in English | MEDLINE | ID: mdl-34455170

ABSTRACT

OBJECTIVE: Gait impairment is the cardinal motor symptom in hereditary spastic paraplegias (HSPs) possibly linked to increased fear of falling and reduced quality of life (QoL). Disease specific symptoms in HSP are rated using the Spastic Paraplegia Rating Scale (SPRS). However, limited studies evaluated more objectively easy-to-apply gait measures by comparing these standardized assessments with patients' self-perceived impairment and clinically established scores. Therefore, the aim of this study was to correlate functional gait measures with self-rating questionnaires for fear of falling and QoL, and with the SPRS as clinical gold standard. METHODS: HSP patients ("pure" phenotype, n = 22) fulfilling the clinical diagnostic criteria for HSP and age-and gender-matched healthy subjects (n = 22) were included in this study. Motor impairment was evaluated using the SPRS, fear of falling by the Falls Efficacy Scale-International (FES-I), and QoL by SF-12. Functional gait measures included gait speed and step length (10-meter-walk-test), the Timed up and go test (TUG), and maximum walking distance (2-min-walking-test). RESULTS: Functional gait measures correlated to fear of falling (gait speed: r = -0.726; step length: r = -0.689; TUG: r = 0.721; 2-min: r = -0.709) and the physical component of QoL (gait speed: r = 0.541; step length: r = 0.531; TUG: r = -0.512; 2-min: r = 0.548). Furthermore, FES-I (r = 0.767) and QoL (r = -0.728) correlated with the clinical gold standard (SPRS). Gait measures strongly correlated with SPRS (gait speed: r = -0.787; step length: r = -0.821; TUG: r = 0.756; 2-min: r = -0.791). CONCLUSION: Functional gait measures reflect fear of falling, QoL, and mobility in HSP. The metric, semi-quantitative gait measures complement the clinician's evaluation and support the clinical workup by more objective parameters.


Subject(s)
Accidental Falls , Fear/psychology , Gait/physiology , Postural Balance/physiology , Quality of Life/psychology , Spastic Paraplegia, Hereditary/physiopathology , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Spastic Paraplegia, Hereditary/psychology , Walking/physiology
5.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32817359

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) constitute the most abundant immune cells in the tumor stroma initiating pro-inflammatory (M1) or immunosuppressive (M2) responses depending on their polarization status. Advances in tumor immunotherapy call for a detailed understanding of potential immunogenic mechanisms of irradiation routinely applied in rectal cancer patients. METHODS: To test the effects of radiotherapy on TAM, we ex vivo irradiated tissue samples of human rectal cancer and assessed the phenotype by flow cytometry. We furthermore evaluated the distribution of leucocyte subsets in tissue sections of patients after short-course radiotherapy and compared findings to non-pretreated rectal cancer using an immunostaining approach. Organotypic assays (OTA) consisting of macrophages, cancer-associated fibroblast and cancer cell lines were used to dissect the immunological consequences of irradiation in macrophages. RESULTS: We demonstrate that short-course neoadjuvant radiotherapy in rectal cancer patients is associated with a shift in the polarization of TAM towards an M1-like pro-inflammatory phenotype. In addition, ex vivo irradiation caused an increase in the phagocytic activity and enhanced expression of markers associated with stimulatory signals necessary for T-cell activation. In OTA we observed that this alteration in macrophage polarization could be mediated by extracellular vesicles (EV) derived from irradiated tumor cells. We identified high mobility group box 1 in EV from irradiated tumor cells as a potential effector signal in that crosstalk. CONCLUSIONS: Our findings highlight macrophages as potential effector cells upon irradiation in rectal cancer by diminishing their immunosuppressive phenotype and activate pro-inflammation. Our data indicate that clinically applied short-term radiotherapy for rectal cancer may be exploited to stimulate immunogenic macrophages and suggest to target the polarization status of macrophages to enhance future immunotherapeutic strategies.


Subject(s)
Extracellular Vesicles/immunology , Macrophages/immunology , Rectal Neoplasms/radiotherapy , Tumor Microenvironment/immunology , Humans , Rectal Neoplasms/pathology
6.
Eur J Immunol ; 50(6): 880-890, 2020 06.
Article in English | MEDLINE | ID: mdl-32052406

ABSTRACT

NK cells are innate lymphocytes responsible for lysis of pathogen-infected and transformed cells. One of the major activating receptors required for target cell recognition is the NK group 2D (NKG2D) receptor. Numerous reports show the necessity of NKG2D for effective tumor immune surveillance. Further studies identified NKG2D as a key element allowing tumor immune escape. We here use a mouse model with restricted deletion of NKG2D in mature NKp46+ cells (NKG2DΔNK ). NKG2DΔNK NK cells develop normally, have an unaltered IFN-γ production but kill tumor cell lines expressing NKG2D ligands (NKG2DLs) less efficiently. However, upon long-term stimulation with IL-2, NKG2D-deficient NK cells show increased levels of the lytic molecule perforin. Thus, our findings demonstrate a dual function of NKG2D for NK cell cytotoxicity; while NKG2D is a crucial trigger for cytotoxicity of tumor cells expressing activating ligands it is also capable to limit perforin production in IL-2 activated NK cells.


Subject(s)
Interleukin-2/pharmacology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Pore Forming Cytotoxic Proteins/immunology , Animals , Cell Line, Tumor , Immunity, Cellular/drug effects , Immunity, Cellular/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Mice , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily K/genetics , Pore Forming Cytotoxic Proteins/genetics
7.
IEEE J Biomed Health Inform ; 24(5): 1490-1499, 2020 05.
Article in English | MEDLINE | ID: mdl-31449035

ABSTRACT

Hereditary spastic paraplegias (HSP) represents a group of orphan neurodegenerative diseases with gait disturbance as the predominant clinical feature. Due to its rarity, research within this field is still limited. Aside from clinical analysis using established scales, gait analysis has been employed to enhance the understanding of the mechanisms behind the disease. However, state of the art gait analysis systems are often large, immobile and expensive. To overcome these limitations, this paper presents the first clinically relevant mobile gait analysis system for HSP patients. We propose an unsupervised model based on local cyclicity estimation and hierarchical hidden Markov models (LCE-hHMM). The system provides stride time, swing time, stance time, swing duration and cadence. These parameters are validated against a GAITRite system and manual sensor data labelling using a total of 24 patients within 2 separate studies. The proposed system achieves a stride time error of -0.00  ± 0.09 s (correlation coefficient, r = 1.00) and a swing duration error of -0.67  ± 3.27 % (correlation coefficient, r = 0.93) with respect to the GAITRite system. We show that these parameters are also correlated to the clinical spastic paraplegia rating scale (SPRS) in a similar manner to other state of the art gait analysis systems, as well as to supervised and general versions of the proposed model. Finally, we show a proof of concept for this system to be used to analyse alterations in the gait of individual patients. Thus, with further clinical studies, due to its automated approach and mobility, this system could be used to determine treatment effects in future clinical trials.


Subject(s)
Gait Analysis/methods , Signal Processing, Computer-Assisted , Spastic Paraplegia, Hereditary , Adult , Algorithms , Female , Gait/physiology , Humans , Male , Markov Chains , Middle Aged , Reproducibility of Results , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/physiopathology , Supervised Machine Learning
8.
Brain Sci ; 9(10)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31601037

ABSTRACT

OBJECTIVE: To identify structural white matter alterations in patients with pure hereditary spastic paraplegia (HSP) using high angular resolution diffusion tensor imaging (DTI). METHODS: We examined 37 individuals with high resolution DTI, 20 patients with pure forms of hereditary spastic paraplegia and 17 age and gender matched healthy controls. DTI was performed using a 3 T clinical scanner with whole brain tract-based spatial statistical (TBSS) analysis of the obtained fractional anisotropy (FA) data as well as a region-of-interest (ROI)-based analysis of affected tracts including the cervical spinal cord. We further conducted correlation analyses between DTI data and clinical characteristics. RESULTS: TBSS analysis in HSP patients showed significantly decreased fractional anisotropy of the corpus callosum and the corticospinal tract compared to healthy controls. ROI-based analysis confirmed significantly lower FA in HSP compared to controls in the internal capsule (0.77 vs. 0.80, p = 0.048), the corpus callosum (0.84 vs. 0.87, p = 0.048) and the cervical spinal cord (0.72 vs. 0.79, p = 0.003). FA values of the cervical spinal cord significantly correlated with disease duration. CONCLUSION: DTI metrics of the corticospinal tract from the internal capsule to the cervical spine suggest microstructural damage and axonal degeneration of motor neurons. The CST at the level of the cervical spinal cord is thereby more severely affected than the intracranial part of the CST, suggesting an ascending axonal degeneration of the CST. Since there is a significant correlation with disease duration, FA may serve as a future progression marker for assessment of the disease course in HSP.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1266-1269, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060107

ABSTRACT

Gait analysis is an important tool for diagnosis, monitoring and treatment of neurological diseases. Among these are hereditary spastic paraplegias (HSPs) whose main characteristic is heterogeneous gait disturbance. So far HSP gait has been analysed in a limited number of studies, and within a laboratory set up only. Although the rarity of orphan diseases often limits larger scale studies, the investigation of these diseases is still important, not only to the affect population, but also for other diseases which share gait characteristics.


Subject(s)
Gait , Spastic Paraplegia, Hereditary
SELECTION OF CITATIONS
SEARCH DETAIL
...