Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Foot Ankle Int ; : 10711007241241264, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618683

ABSTRACT

BACKGROUND: Haglund exostosis-related heel pain may be surgically treated with dorsal closing wedge calcaneal osteotomy (DCWCO). Recent reports on this technique show good clinical and self-reported outcomes. However, uncertainty about functional consequences related to ankle muscle strength and gait function due to a shortened Achilles tendon lever arm exists. METHODS: Fifteen patients (15 feet) with Haglund exostosis-related heel pain were surgically treated with DCWCO and evaluated before and 1 year after surgery. Isometric plantar flexion and dorsiflexion strength was quantified for both the involved and the uninvolved limb. Gait analysis was performed at a self-selected walking speed using a 3D motion capture system including force plates. Self-reported outcomes (Foot Function Index and Global Treatment Outcome) were also assessed. RESULTS: Before surgery, as well as after surgery, plantar flexion strength of the involved limb was significantly lower compared to the uninvolved limb while dorsiflexion strength did not differ between limbs at both time points. Step length and time, ankle flexion angles, power generation, and propulsive impulses during gait did not differ between limbs both before and after surgery. Propulsive impulse and step length of the involved limb increased from pre- to postsurgery with an effect size of 1.04 and 0.48, respectively, revealing a general improvement in gait dynamics. Total Foot Function Index improved by 48% after surgery, and 80% of patients rated their surgery as "helped" or "helped a lot" (Global Treatment Outcome). CONCLUSION: In this relatively small cohort, we found that patients treated for Haglund exostosis-related heel pain with DCWCO surgery had minor interlimb differences in gait kinematics and kinetics and generally improved gait dynamics and self-reported function at 1-year follow-up. LEVEL OF EVIDENCE: Level II, observational prospective cohort study.

2.
J Biomech ; 144: 111306, 2022 11.
Article in English | MEDLINE | ID: mdl-36183494

ABSTRACT

While there is general agreement on the transverse plane knee joint motion for loaded flexion activities, its kinematics during functional movements such as level walking are discussed more controversially. One possible cause of this controversy could originate from the interpretation of kinematics based on different analysis approaches. In order to understand the impact of these approaches on the interpretation of tibio-femoral motion, a set of dynamic videofluoroscopy data presenting continuous knee bending and complete cycles of walking in ten subjects was analysed using six different kinematic analysis approaches. Use of a functional flexion axis resulted in significantly smaller ranges of condylar translation compared to anatomical axes and contact approaches. All contact points were located significantly more anteriorly than the femur fixed axes after 70° of flexion, but also during the early/mid stance and late swing phases of walking. Overall, a central to medial transverse plane centre of rotation was found for both activities using all six kinematic analysis approaches, although individual subjects exhibited lateral centres of rotation using certain approaches. The results of this study clearly show that deviations from the true functional axis of rotation result in kinematic crosstalk, suggesting that functional axes should be reported in preference to anatomical axes. Contact approaches, on the other hand, can present additional information on the local tibio-femoral contact conditions. To allow a more standardised comparison and interpretation of tibio-femoral kinematics, results should therefore be reported using at least a functionally determined axis and possibly also a contact point approach.


Subject(s)
Femur , Knee Prosthesis , Humans , Biomechanical Phenomena , Knee Joint , Range of Motion, Articular , Tibia
3.
PLoS One ; 17(6): e0270596, 2022.
Article in English | MEDLINE | ID: mdl-35749482

ABSTRACT

Measuring joint kinematics is a key requirement for a plethora of biomechanical research and applications. While x-ray based systems avoid the soft-tissue artefacts arising in skin-based measurement systems, extracting the object's pose (translation and rotation) from the x-ray images is a time-consuming and expensive task. Based on about 106'000 annotated images of knee implants, collected over the last decade with our moving fluoroscope during activities of daily living, we trained a deep-learning model to automatically estimate the 6D poses for the femoral and tibial implant components. By pretraining a single stage of our architecture using renderings of the implant geometries, our approach offers personalised predictions of the implant poses, even for unseen subjects. Our approach predicted the pose of both implant components better than about 0.75 mm (in-plane translation), 25 mm (out-of-plane translation), and 2° (all Euler-angle rotations) over 50% of the test samples. When evaluating over 90% of test samples, which included heavy occlusions and low contrast images, translation performance was better than 1.5 mm (in-plane) and 30 mm (out-of-plane), while rotations were predicted better than 3-4°. Importantly, this approach now allows for pose estimation in a fully automated manner.


Subject(s)
Knee Joint , Knee Prosthesis , Activities of Daily Living , Biomechanical Phenomena , Fluoroscopy/methods , Humans , Knee Joint/diagnostic imaging , Neural Networks, Computer
4.
Clin Biomech (Bristol, Avon) ; 96: 105667, 2022 06.
Article in English | MEDLINE | ID: mdl-35636308

ABSTRACT

BACKGROUND: A comparison of natural versus replaced tibio-femoral kinematics in vivo during challenging activities of daily living can help provide a detailed understanding of the mechanisms leading to unsatisfactory results and lay the foundations for personalised implant selection and surgical implantation, but also enhance further development of implant designs towards restoring physiological knee function. The aim of this study was to directly compare in vivo tibio-femoral kinematics in natural versus replaced knees throughout complete cycles of different gait activities using dynamic videofluoroscopy. METHODS: Twenty-seven healthy and 30 total knee replacement subjects (GMK Sphere, GMK PS, GMK UC) were assessed during multiple complete gait cycles of level walking, downhill walking, and stair descent using dynamic videofluoroscopy. Following 2D/3D registration, tibio-femoral rotations, condylar antero-posterior translations, and the location of the centre of rotation were compared. FINDINGS: The total knee replacement groups predominantly experienced reduced tibial internal/external rotation and altered medial and lateral condylar antero-posterior translations compared to natural knees. An average medial centre of rotation was found for the natural and GMK sphere groups in all three activities, whereas the GMK PS and UC groups experienced a more central to lateral centre of rotation. INTERPRETATION: Each total knee replacement design exhibited characteristic motion patterns, with the GMK Sphere most closely replicating the medial centre of rotation found for natural knees. Despite substantial similarities between the subject groups, none of the implant geometries was able to replicate all aspects of natural tibio-femoral kinematics, indicating that different implant geometries might best address individual functional needs.


Subject(s)
Awards and Prizes , Knee Prosthesis , Activities of Daily Living , Biomechanical Phenomena , Femur/diagnostic imaging , Femur/physiology , Femur/surgery , Humans , Knee Joint/diagnostic imaging , Knee Joint/physiology , Knee Joint/surgery , Range of Motion, Articular/physiology
5.
Sports (Basel) ; 10(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35202059

ABSTRACT

Injuries to the shoulder are very common in sports that involve overhead arm or throwing movements. Strength training of the chest muscles has the potential to protect the shoulder from injury. Kinematic and kinetic data were acquired in 20 healthy subjects (age: 24.9 ± 2.7 years) using motion capture, force plates for the bench press exercises and load cells in the cable for the cable pulley exercises with 15% and 30% of body weight (BW). Joint ranges of motion (RoM) and joint moments at the shoulder, elbow and wrist were derived using an inverse dynamics approach. The maximum absolute moments at the shoulder joint were significantly larger for the cable pulley exercises than for the bench press exercises. The cable cross-over exercise resulted in substantially different joint angles and loading patterns compared to most other exercises, with higher fluctuations during the exercise cycle. The present results indicate that a combination of bench press and cable pulley exercises are best to train the full RoM and, thus, intra-muscular coordination across the upper limbs. Care has to be taken when performing cable cross-over exercises to ensure proper stabilisation of the joints during exercise execution and avoid joint overloading.

6.
Sensors (Basel) ; 23(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36616945

ABSTRACT

The success of kinematic analysis that relies on inertial measurement units (IMUs) heavily depends on the performance of the underlying algorithms. Quantifying the level of uncertainty associated with the models and approximations implemented within these algorithms, without the complication of soft-tissue artefact, is therefore critical. To this end, this study aimed to assess the rotational errors associated with controlled movements. Here, data of six total knee arthroplasty patients from a previously published fluoroscopy study were used to simulate realistic kinematics of daily activities using IMUs mounted to a six-degrees-of-freedom joint simulator. A model-based method involving extended Kalman filtering to derive rotational kinematics from inertial measurements was tested and compared against the ground truth simulator values. The algorithm demonstrated excellent accuracy (root-mean-square error ≤0.9°, maximum absolute error ≤3.2°) in estimating three-dimensional rotational knee kinematics during level walking. Although maximum absolute errors linked to stair descent and sit-to-stand-to-sit rose to 5.2° and 10.8°, respectively, root-mean-square errors peaked at 1.9° and 7.5°. This study hereby describes an accurate framework for evaluating the suitability of the underlying kinematic models and assumptions of an IMU-based motion analysis system, facilitating the future validation of analogous tools.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Joint , Humans , Biomechanical Phenomena , Movement , Motion
7.
Front Bioeng Biotechnol ; 9: 679360, 2021.
Article in English | MEDLINE | ID: mdl-34368092

ABSTRACT

Hip osteoarthritis may be caused by increased or abnormal intra-articular forces, which are known to be related to structural articular cartilage damage. Femoral torsional deformities have previously been correlated with hip pain and labral damage, and they may contribute to the onset of hip osteoarthritis by exacerbating the effects of existing pathoanatomies, such as cam and pincer morphologies. A comprehensive understanding of the influence of femoral morphotypes on hip joint loading requires subject-specific morphometric and biomechanical data on the movement characteristics of individuals exhibiting varying degrees of femoral torsion. The aim of this study was to evaluate hip kinematics and kinetics as well as muscle and joint loads during gait in a group of adult subjects presenting a heterogeneous range of femoral torsion by means of personalized musculoskeletal models. Thirty-seven healthy volunteers underwent a 3D gait analysis at a self-selected walking speed. Femoral torsion was evaluated with low-dosage biplanar radiography. The collected motion capture data were used as input for an inverse dynamics analysis. Personalized musculoskeletal models were created by including femoral geometries that matched each subject's radiographically measured femoral torsion. Correlations between femoral torsion and hip kinematics and kinetics, hip contact forces (HCFs), and muscle forces were analyzed. Within the investigated cohort, higher femoral antetorsion led to significantly higher anteromedial HCFs during gait (medial during loaded stance phase and anterior during swing phase). Most of the loads during gait are transmitted through the anterior/superolateral quadrant of the acetabulum. Correlations with hip kinematics and muscle forces were also observed. Femoral antetorsion, through altered kinematic strategies and different muscle activations and forces, may therefore lead to altered joint mechanics and pose a risk for articular damage. The method proposed in this study, which accounts for both morphological and kinematic characteristics, might help in identifying in a clinical setting patients who, as a consequence of altered femoral torsional alignment, present more severe functional impairments and altered joint mechanics and are therefore at a higher risk for cartilage damage and early onset of hip osteoarthritis.

8.
J Biomech ; 110: 109915, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32827791

ABSTRACT

Accurate assessment of 3D tibio-femoral kinematics is essential for understanding knee joint functionality, but also provides a basis for assessing joint pathologies and the efficacy of musculoskeletal interventions. Until now, however, the assessment of functional kinematics in healthy knees has been mostly restricted to the loaded stance phase of gait, and level walking only, but the most critical conditions for the surrounding soft tissues are known to occur during high-flexion activities. This study aimed to determine the ranges of tibio-femoral rotation and condylar translation as well as provide evidence on the location of the centre of rotation during multiple complete cycles of different gait activities. Based on radiographic images captured using moving fluoroscopy in ten healthy subjects during multiple cycles of level walking, downhill walking and stair descent, 3D femoral and tibial poses were reconstructed to provide a comprehensive description of tibio-femoral kinematics. Despite a significant increase in joint flexion, the condylar antero-posterior range of motion remained comparable across all activities, with mean translations of 6.3-8.3 mm and 7.3-9.3 mm for the medial and lateral condyles respectively. Only the swing phase of level walking and stair descent exhibited a significantly greater range of motion for the lateral over the medial compartment. Although intra-subject variability was low, considerable differences in joint kinematics were observed between subjects. The observed subject-specific movement patterns indicate that accurate assessment of individual pre-operative kinematics together with individual implant selection and/or surgical implantation decisions might be necessary before further improvement to joint replacement outcome can be achieved.


Subject(s)
Femur , Knee Joint , Biomechanical Phenomena , Femur/diagnostic imaging , Gait , Humans , Range of Motion, Articular
9.
Article in English | MEDLINE | ID: mdl-32728445

ABSTRACT

BACKGROUND: Symmetry during lifting is considered critical for allowing balanced power production and avoidance of injury. This investigation assessed the influence of elevating the heels on bilateral lower limb symmetry during loaded (50% of body weight) high-bar back squats. METHODS: Ten novice (mass 67.6 ± 12.4 kg, height 1.73 ± 0.10 m) and ten regular weight trainers (mass 66.0 ± 10.7 kg, height 1.71 ± 0.09 m) were assessed while standing on both the flat level floor and on an inclined board. Data collection used infra-red motion capture procedures and two force platforms to record bilateral vertical ground reaction force (GRFvert) and ankle, knee and hip joint kinematic and kinetic data. Paired t-tests and statistical parametric mapping (SPM1D) procedures were used to assess differences in discrete and continuous bilateral symmetry data across conditions. RESULTS: Although discrete joint kinematic and joint moment symmetry data were largely unaffected by raising the heels, the regular weight trainers presented greater bilateral asymmetry in these data than the novices. The one significant finding in these discrete data showed that raising the heels significantly reduced maximum knee extension moment asymmetry (P = 0.02), but in the novice group only. Time-series analyses indicated significant bilateral asymmetries in both GRFvert and knee extension moments mid-way though the eccentric phase for the novice group, with the latter unaffected by heel lift condition. There were no significant bilateral asymmetries in time series data within the regular weight training group. CONCLUSIONS: This investigation highlights that although a degree of bilateral lower limb asymmetry is common in individuals performing back squats, the degree of this symmetry is largely unaffected by raising the heels. Differences in results for discrete and time-series symmetry analyses also highlight a key issue associated with relying solely on discrete data techniques to assess bilateral symmetry during tasks such as the back squat.

10.
J Clin Med ; 9(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630654

ABSTRACT

This study aimed to understand the ability of fixed-bearing posterior cruciate ligament (PCL)-retaining implants to maintain functionality of the PCL in vivo. To achieve this, elongation of the PCL was examined in six subjects with good clinical and functional outcomes using 3D kinematics reconstructed from video-fluoroscopy, together with multibody modelling of the knee. Here, length-change patterns of the ligament bundles were tracked throughout complete cycles of level walking and stair descent. Throughout both activities, elongation of the anterolateral bundle exhibited a flexion-dependent pattern with more stretching during swing than stance phase (e.g., at 40° flexion, anterolateral bundle experienced 3.9% strain during stance and 9.1% during swing phase of stair descent). The posteromedial bundle remained shorter than its reference length (defined at heel strike of the level gait cycle) during both activities. Compared with loading patterns of the healthy ligament, postoperative elongation patterns indicate a slackening of the ligament at early flexion followed by peak ligament lengths at considerably smaller flexion angles. The reported data provide a novel insight into in vivo PCL function during activities of daily living that has not been captured previously. The findings support previous investigations reporting difficulties in achieving a balanced tension in the retained PCL.

11.
Gait Posture ; 80: 77-79, 2020 07.
Article in English | MEDLINE | ID: mdl-32492624

ABSTRACT

BACKGROUND: Instrumented treadmills are potentially useful tools for the assessment of gait parameters in orthopaedic clinical settings, but their measurement properties remain uncertain. RESEARCH QUESTION: What is the discriminant validity and reproducibility of spatiotemporal and kinetic gait parameters measured by a pressure-instrumented treadmill at different speeds and inclinations in patients with knee osteoarthritis (KOA)? METHODS: A total of 54 patients with unilateral KOA and 23 healthy controls took part in the study. Step length, single-limb support duration and ground reaction force were recorded during level and uphill walking at 3 and 4 km/h using a commercially-available treadmill instrumented with an integrated pressure platform. We examined discriminant validity (difference between involved and uninvolved side as well as against healthy controls) and test-retest reproducibility (reliability and agreement). RESULTS: Significant side differences were observed for single-limb support duration and ground reaction force at touchdown in all conditions (P < 0.05). All the investigated gait parameters showed acceptable reliability and agreement, except step length at 4 km/h uphill. SIGNIFICANCE: We conclude that the pressure-instrumented treadmill used in this study may have good clinical utility for quantitative gait analysis in patients with KOA under different experimental conditions.


Subject(s)
Gait Analysis , Osteoarthritis, Knee/physiopathology , Walking , Aged , Biomechanical Phenomena , Case-Control Studies , Discriminant Analysis , Exercise Test , Extremities , Female , Humans , Kinetics , Male , Middle Aged , Reproducibility of Results , Spatio-Temporal Analysis
12.
J Arthroplasty ; 35(10): 3010-3030, 2020 10.
Article in English | MEDLINE | ID: mdl-32564968

ABSTRACT

BACKGROUND: Paradoxical anterior translation in midflexion is reduced in total knee arthroplasties (TKAs) with a gradually reducing femoral radius, when compared to a 2-radii design. This reduction has been shown in finite element model simulations, in vitro tests, intraoperatively, and recently also in vivo during a lunge and unloaded flexion-extension. However, TKA kinematics are task dependent and this reduction has not been tested for gait activities. METHODS: Thirty good outcome subjects (≥1 year postoperatively) with a unilateral cruciate-retaining TKA with a gradually reducing (n = 15) or dual (n = 15) femoral radius design were assessed during 5 complete cycles of level walking, stair descent (0.18-m steps), deep knee bend, and sitting down onto and standing up from a chair, using a moving fluoroscope (25 Hz, 1 ms shutter time). Kinematic data were extracted by 2D/3D image registration. RESULTS: Tibiofemoral ranges of motion for flexion-extension, abduction-adduction, internal-external rotation, and anteroposterior (AP) translation were similar for both groups, whereas the pattern of AP translation-flexion-coupling differed. The subjects with the dual-radii design showed a sudden change in direction of AP translation around 30° of flexion, which was not present in the subjects with the gradually reducing femoral radius design. CONCLUSION: Through the unique ability of moving fluoroscopy, the present study confirmed that the gradually reducing femoral radii eliminated the paradoxical sudden anterior translation at 30° present in the dual-radii design in vivo during daily activities, including gait and stair descent.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Biomechanical Phenomena , Humans , Knee Joint/diagnostic imaging , Knee Joint/surgery , Radius , Range of Motion, Articular
13.
J Sports Sci ; 38(9): 1000-1008, 2020 May.
Article in English | MEDLINE | ID: mdl-32183616

ABSTRACT

This research assessed the influence of various heel elevation conditions on spinal kinematic and kinetic data during loaded (25% and 50% of body weight) high-bar back squats. Ten novice (mass 67.6 ± 12.4 kg, height 1.73 ± 0.10 m) and ten regular weight trainers (mass 66.0 ± 10.7 kg, height 1.71 ± 0.09 m) completed eight repetitions at each load wearing conventional training shoes standing on the flat level floor (LF) and on an inclined board (EH). The regular weight training group performed an additional eight repetitions wearing weightlifting shoes (WS). Statistical parametric mapping (SPM1D) and repeated measures analysis of variance were used to assess differences in spinal curvature and kinetics across the shoe/floor conditions and loads. SPM1D analyses indicated that during the LF condition the novice weight trainers had greater moments around L4/L5 than the regular weight trainers during the last 20% of the lift (P < 0.05), with this difference becoming non-significant during the EH condition. This study indicates that from a perspective of spinal safety, it appears advantageous for novice weight trainers to perform back squats with their heels slightly elevated, while regular weight trainers appear to realize only limited benefits performing back squats with either EH or WS.


Subject(s)
Heel/physiology , Resistance Training/methods , Spine/physiology , Weight Lifting/physiology , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Male , Shoes , Time and Motion Studies , Young Adult
15.
Med Eng Phys ; 77: 107-113, 2020 03.
Article in English | MEDLINE | ID: mdl-31980316

ABSTRACT

The accurate quantification of in-vivo tibio-femoral kinematics is essential for understanding joint functionality, but determination of the 3D pose of bones from 2D single-plane fluoroscopic images remains challenging. We aimed to evaluate the accuracy, reliability and repeatability of an intensity-based 2D/3D registration algorithm. The accuracy was evaluated using fluoroscopic images of 2 radiopaque bones in 18 different poses, compared against a gold-standard fiducial calibration device. In addition, 3 natural femora and 3 natural tibiae were used to examine registration reliability and repeatability. Both manual fitting and intensity-based registration exhibited a mean absolute error of <1 mm in-plane. Overall, intensity-based registration of the femoral bone model revealed significantly higher translational and rotational errors than manual fitting, while no statistical differences (except for y-axis translation) were found for the tibial bone model. The repeatability of 108 intensity-based registrations showed mean in-plane standard deviations of 0.23-0.56 mm, but out-of-plane position repeatability was lower (mean SD: femur 7.98 mm, tibia 6.96 mm). SDs for rotations averaged 0.77-2.52°. While the algorithm registered some images extremely well, other images clearly required manual intervention. When the algorithm registered the bones repeatably, it was also accurate, suggesting an approach that includes manual intervention could become practical for efficient and accurate registration.


Subject(s)
Algorithms , Fluoroscopy , Imaging, Three-Dimensional/methods , Knee/diagnostic imaging , Humans , Software
16.
Knee Surg Sports Traumatol Arthrosc ; 28(6): 1765-1773, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31256216

ABSTRACT

PURPOSE: Unicompartmental knee arthroplasty (UKA), resulting in similar kinematics to native knees, is functionally superior to total knee arthroplasty (TKA). However, ACL deficiency is generally considered to be a contraindication. The main purpose of this study was to investigate if UKA in ACL-deficient knees would result in similar kinematics to conventional UKA with an intact ACL. METHODS: Ten conventional UKA patients were compared to eight ACL-deficient patients with a reduced tibial slope to compensate for instability, resulting from the deficient ACL. Knee kinematics was evaluated with a moving fluoroscope, tracking the knee joint during daily activities. In a standing position (baseline), posterior shift of the femur was observed for ACL-deficient UKA patients, compared to conventional UKA patients. RESULTS: A significant posterior femoral shift in the ACL-deficient group was observed during the first 25% (near extension) of deep knee bend, while there was no difference in kinematic waveforms for all other activities. No significant range of motion differences across different activities between the two UKA groups were detected, except for an increase of medial AP translation in the ACL-deficient group, during deep knee bend and stair descent. CONCLUSION: Despite the posterior femoral shift due to ACL deficiency, both UKA groups showed similar kinematic waveforms, indicating that posterior tibial slope reduction can partially compensate for ACL function. This supported our hypothesis that fixed bearing UKA can be a viable treatment option for selected ACL-deficient patients, allowing patient-specific kinematics. While anteroposterior laxity can be compensated, rotational stability was a prerequisite for this approach. LEVEL OF EVIDENCE: III.


Subject(s)
Anterior Cruciate Ligament/surgery , Arthroplasty, Replacement, Knee/methods , Fluoroscopy , Knee Joint/surgery , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Femur/surgery , Humans , Knee/surgery , Male , Middle Aged , Movement , Range of Motion, Articular , Tibia/surgery
17.
Article in English | MEDLINE | ID: mdl-31799245

ABSTRACT

The primary aim of this study was to assess the effects of total knee arthroplasty (TKA) implant design on collateral ligament elongation patterns that occur during level walking, downhill walking, and stair descent. Using a moving fluoroscope, tibiofemoral kinematics were captured in three groups of patients with different TKA implant designs, including posterior stabilized, medial stabilized, and ultra-congruent. The 3D in vivo joint kinematics were then fed into multibody models of the replaced knees and elongation patterns of virtual bundles connecting origin and insertion points of the medial and lateral collateral ligaments (MCL and LCL) were determined throughout complete cycles of all activities. Regardless of the implant design and activity type, non-isometric behavior of the collateral ligaments was observed. The LCL shortened with increasing knee flexion, while the MCL elongation demonstrated regional variability, ranging from lengthening of the anterior bundle to slackening of the posterior bundle. The implant component design did not demonstrate statistically significant effects on the collateral elongation patterns and this was consistent between the studied activities. This study revealed that post-TKA collateral ligament elongation is primarily determined by the knee flexion angle. The different anterior translation and internal rotation that were induced by three distinctive implant designs had minimal impact on the length change patterns of the collateral ligaments.

18.
J Orthop Res ; 37(11): 2337-2347, 2019 11.
Article in English | MEDLINE | ID: mdl-31304995

ABSTRACT

Joint stability is a primary concern in total knee joint replacement. The GMK Sphere prosthesis was specifically designed to provide medial compartment anterior-posterior (A-P) stability, while permitting rotational freedom of the joint through a flat lateral tibial surface. The objective of this study was to establish the changes in joint kinematics introduced by the GMK Sphere prosthesis during gait activities in comparison to conventional posterior-stabilized (PS) fixed-bearing and ultra-congruent (UC) mobile-bearing geometries. The A-P translation and internal/external rotation of three cohorts, each with 10 good outcome subjects (2.9 ± 1.6 years postop), with a GMK Sphere, GMK PS or GMK UC implant were analysed throughout complete cycles of gait activities using dynamic videofluoroscopy. The GMK Sphere showed the smallest range of medial compartment A-P translation for level walking, downhill walking, and stair descent (3.6 ± 0.9 mm, 3.1 ± 0.8 mm, 3.9 ± 1.3 mm), followed by the GMK UC (5.7 ± 1.0 mm, 8.0 ± 1.7 mm, 8.7 ± 1.9 mm) and the GMK PS (10.3 ± 2.2 mm, 10.1 ± 2.6 mm, 11.6 ± 1.6 mm) geometries. The GMK Sphere exhibited the largest range of lateral compartment A-P translation (12.1 ± 2.2 mm), and the largest range of tibial internal/external rotation (13.2 ± 2.2°), both during stair descent. This study has shown that the GMK Sphere clearly restricts A-P motion of the medial condyle during gait activities while still allowing a large range of axial rotation. The additional comparison against the conventional GMK PS and UC geometries, not only demonstrates that implant geometry is a key factor in governing tibio-femoral kinematics, but also that the geometry itself probably plays a more dominant role for joint movement than the type of gait activity. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2337-2347, 2019.


Subject(s)
Gait , Knee Prosthesis , Aged , Aged, 80 and over , Biomechanical Phenomena , Cohort Studies , Female , Fluoroscopy , Humans , Male , Middle Aged
19.
J Orthop Surg Res ; 14(1): 173, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31182129

ABSTRACT

BACKGROUND: The measurement of finger and wrist range of motion (ROM) is of great importance to clinicians when assessing functional outcomes of therapeutic interventions and surgical procedures. The purpose of the study was to assess the repeatability of ROM measurements of the hand joints with manual goniometer and 3D motion capture system and to calculate the minimal detectable difference for both methods. METHODS: Active finger and wrist joints ROM of 20 healthy volunteers were assessed using a manual goniometer and 3D motion capture system. Minimal detectable difference (MDD) and standard error of measurement (SEM) were calculated for both measurement systems and compared within the same task. Maximal ROM of all joints was registered twice on two different days to evaluate the test-retest repeatability. The intraclass correlation coefficients (ICC) was calculated and examined to determine if reliability ≥ 0.70 existed. RESULTS: MDD for the 3D motion capture was between 5 and 12° except for the metacarpophalangeal joint (MCP) 1, interphalangeal joint (IP), and MCP5. SEM values lay between 2 and 4° for all joints except for the MCP5, IP, and MCP1. For the goniometric measurements, MDD and SEM were between 12-30° and 4-11°, respectively. The reliability criterion (ICC > 0.7) was achieved for the ROM measurement with the 3D motion capture system for 94% of the joints and in only 65% of the joints with the manual goniometer. CONCLUSIONS: Joint ROM assessed with 3D motion analysis showed higher test-retest agreement demonstrating overall better repeatability for this method. Because of the smaller measurement error, the 3D motion capture system has a smaller MDD. Only individual test-rest differences bigger than the MDD can be considered as real changes, and therefore, in an experimental situation, the use of a more precise measurement method can greatly reduce the number of subjects needed for a statistical significance. Goniometer measurements of some joints should be carefully interpreted, due to a low repeatability and reliability. TRIAL REGISTRATION: This study is approved by the Ethical Committee Zurich ( Kek-ZH-Nr: 2015-0395 ).


Subject(s)
Arthrometry, Articular/methods , Fingers/physiology , Imaging, Three-Dimensional/methods , Range of Motion, Articular/physiology , Wrist Joint/physiology , Adult , Arthrometry, Articular/standards , Female , Humans , Imaging, Three-Dimensional/standards , Male
20.
Proc Inst Mech Eng H ; 233(8): 764-783, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31132926

ABSTRACT

The human hand is the most frequently used body part in activities of daily living. With its complex anatomical structure and the small size compared to the body, assessing the functional capability is highly challenging. The aim of this review was to provide a systematic overview on currently available 3D motion analysis based on skin markers for the assessment of hand function during activities of daily living. It is focused on methodology rather than results. A systematic review according to the PRISMA guidelines was performed. The systematic search yielded 1349 discrete articles. Of 147 articles included on basis of title, 123 were excluded after abstract review, and 24 were included in the full-text analysis with 13 key articles. There is still limited knowledge about hand and finger kinematics during activities of daily living. A standardization of the task is required in order to overcome the nonrepetitive nature and high variability of upper limb motion and ensure repeatability of task performance. To yield a progress in the analysis of human hand movements, an assessment of human kinematics including fingers, wrist, and thumb and an identification of relevant parameters that characterize a healthy motion pattern during functional tasks are needed.


Subject(s)
Activities of Daily Living , Hand/physiology , Monitoring, Physiologic/instrumentation , Movement , Fingers/physiology , Humans , Thumb/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...