Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 16(1): e202200186, 2023 01.
Article in English | MEDLINE | ID: mdl-36153308

ABSTRACT

In this paper, we present an investigation of the influence of the temperature on the sensing of biological samples. We used biofunctionalized microsphere-based fiber-optic sensor to detect immunoglobulin G attached to the sensor head at temperatures relevant in biological research: 5°C, 25°C, and 55°C. The construction of the sensor allowed us to perform measurements in the small amount of solution. The results of our experiment confirm substantial changes in the measured reflected optical power, indicating the need to control the temperature during such measurements. The sensitivity of the sensor used in this research is 8.82 nW/°C. Coefficient R was also calculated and it equals 0.998, which shows good fit between theoretical linear fit and obtained measured data.


Subject(s)
COVID-19 , Optical Fibers , Humans , Temperature , SARS-CoV-2 , Biology
2.
J Biophotonics ; 16(1): e202200172, 2023 01.
Article in English | MEDLINE | ID: mdl-36222282

ABSTRACT

In this paper, we present the design and the principle of operation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific immunoglobulin G (IgG) biophotonic sensor, which is based on the single-mode telecommunication fiber. We fabricated the sensor head at the face of the single mode fiber-28. Due to the process of bio-functionalization, our sensor has the ability to selectively detect the SARS-CoV-2 specific IgG antibodies. The results of preliminary tests allowed us to correctly determine the presence of antibodies in less than 1 min in 5 µl in a volume sample of concentration of 10 µg/ml, which according to studies, corresponds to the concentration of IgG antibodies in human serum. Additionally, the tested sample can be smaller than 5 µl in volume.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin G , Antibodies, Viral
3.
Sensors (Basel) ; 21(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34372220

ABSTRACT

This study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor with a 100 nm coating, a spectrum shift of the reflected signal and the optical power of the reflected signal were used to measure temperature, while only the optical power of the reflected signal was used in the sensor with a 200 nm coating. The R2 coefficient of the discussed sensors indicates a linear fit of over 0.99 to the obtained data. The sensitivity of the sensors, investigated in this study, equals 103.5 nW/°C and 19 pm/°C or 11.4 nW/°C for ZnO thickness of 200 nm and 100 nm, respectively.

4.
Materials (Basel) ; 14(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467152

ABSTRACT

Optical phantoms are used to validate optical measurement methods. The stability of their optical parameters over time allows them to be used and stored over long-term periods, while maintaining their optical parameters. The aim of the presented research was to investigate the stability of fabricated porous phantoms, which can be used as a lung phantom in optical system. Measurements were performed in multiple series with an interval of 6 months, recreating the same conditions and using the same measuring system consisting of an integrating sphere, a coherent light source with a wavelength of 635 nm and a detector. Scattering and absorption parameters were determined on the basis of the measured reflectance and transmittance. The tested samples were made of silicone and glycerol in various proportions.

5.
Sci Rep ; 10(1): 19141, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33154464

ABSTRACT

Fiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage or deteriorate due to unwanted chemical reactions with the surrounding agent. In this paper, we investigated a sensor structure formed with a Zinc Oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) on the tip of a single-mode fiber. A nanocrystalline diamond sheet (NDS) attached over the ZnO is described. The diamond structure was synthesized in a Microwave Plasma Assisted Chemical Vapor Deposition System. The deposition processes of the nanomaterials, the procedure of attaching NDS to the fiber end-face covered with ZnO, and the results of optical measurements are presented.

6.
Sensors (Basel) ; 20(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825233

ABSTRACT

In this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature measurements between 100 and 300 °C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in real-time, which allows for higher accuracy during measurements. The study has demonstrated that ZnO ALD-coated microsphere-based sensors can be successfully used for temperature measurements. The sensitivity of the tested device was found to be 103.5 nW/°C when the sensor was coupled with a light source of 1300 nm central wavelength. The measured coefficient R2 of the sensor head was over 0.99, indicating a good fit of the theoretical linear model to the measured experimental data.

7.
Nanomaterials (Basel) ; 9(2)2019 Feb 23.
Article in English | MEDLINE | ID: mdl-30813442

ABSTRACT

We report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C. The modified fiber-optic microsphere was examined using scanning electron microscopy and Raman spectroscopy. Theoretical modeling has been carried out to assess the structure performance, and the performed experimental measurements carried out confirmed the enhanced sensing abilities when the microsphere was coated with a ZnO layer. The fabricated refractive index sensor was operating in a reflective mode of a Fabry⁻Pérot configuration, using a low coherent measurement system. The application of the ALD ZnO coating enabled for a better measurement of the refractive index of samples in the range of the refractive index allowed by the optical fiber. The proof-of-concept results presented in this work open prospects for the sensing community and will promote the use of fiber-optic sensing technologies.

8.
Sensors (Basel) ; 18(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347649

ABSTRACT

The application of a Bluetooth skin resistance sensor in assisting people with Autism Spectrum Disorders (ASD), in their day-to-day work, is presented in this paper. The design and construction of the device are discussed. The authors have considered the best placement of the sensor, on the body, to gain the most accurate readings of user stress levels, under various conditions. Trial tests were performed on a group of sixteen people to verify the correct functioning of the device. Resistance levels were compared to those from the reference system. The placement of the sensor has also been determined, based on wearer convenience. With the Bluetooth Low Energy block, users can be notified immediately about their abnormal stress levels via a smartphone application. This can help people with ASD, and those who work with them, to facilitate stress control and make necessary adjustments to their work environment.


Subject(s)
Autism Spectrum Disorder/psychology , Computer Communication Networks/instrumentation , Skin/physiopathology , Wireless Technology/instrumentation , Workplace/psychology , Humans , Smartphone/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...