Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 127: 102753, 2019 12.
Article in English | MEDLINE | ID: mdl-31586831

ABSTRACT

Nano-structured phase masks offer intriguing possibilities in electron-beam shaping. The fabrication of such phase masks is typically achieved by focused (Ga+-)ion beam milling of thin membranes. To overcome the problem of Ga implantation in the phase mask, we explore the fabrication of silicon-nitride phase masks using thermal scanning probe lithography combined with wet and dry etching. The functionality of the phase masks is demonstrated by generation of electron Vortex and Bessel beams. Major benefit of thermal scanning probe lithography in addition to the absence of ion implantation is the high accuracy and control over the patterned structure and depth.

2.
Sci Rep ; 7(1): 16502, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184150

ABSTRACT

Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

3.
Nanotechnology ; 27(23): 235705, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27146329

ABSTRACT

The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

4.
Nanotechnology ; 24(40): 405201, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24029415

ABSTRACT

To minimize parasitic doping effects caused by uncontrolled material adsorption, graphene is often investigated under vacuum. Here we report an entirely unexpected phenomenon occurring in vacuum systems, namely strong n-doping of graphene due to chemical species generated by common ion high-vacuum gauges. The effect-reversible upon exposing graphene to air-is significant, as doping rates can largely exceed 10(12) cm(-2) h(-1), depending on pressure and the relative position of the gauge and the graphene device. It is important to be aware of this phenomenon, as its basic manifestation can be mistakenly interpreted as vacuum-induced desorption of p-dopants.

5.
Nano Lett ; 13(9): 4527-31, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23978224

ABSTRACT

Carbon nanotubes used as conductive atomic force microscopy probes are expected to withstand extremely high currents. However, in existing prototypes, significant self-heating results in rapid degradation of the nanotube probe. Here, we investigate an alternative probe design, fabricated by dielectric encapsulation of multiwalled carbon nanotubes, which can support unexpectedly high currents with extreme stability. We show that the dielectric coating acts as a reservoir for Joule heat removal, and as a chemical barrier against thermal oxidation, greatly enhancing transport properties. In contact with Au surfaces, these probes can carry currents of 0.12 mA at a power of 1.5 mW and show no measurable change in resistance at current densities of 10(12) A/m(2) over a time scale of 10(3) s. Our observations are in good agreement with theoretical modeling and exact numerical calculations, demonstrating that the enhanced transport characteristics of such probes are governed by their more effective heat removal mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...