Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35779864

ABSTRACT

Excess dietary fructose consumption promotes metabolic dysfunction thereby increasing the risk of obesity, type 2 diabetes, non-alcoholic steatohepatitis (NASH), and related comorbidities. PF-06835919, a first-in-class ketohexokinase (KHK) inhibitor, showed reversal of such metabolic disorders in preclinical models and clinical studies, and is under clinical development for the potential treatment of NASH. In this study, we evaluated the transport and metabolic pathways of PF-06835919 disposition and assessed pharmacokinetics in preclinical models. PF-06835919 showed active uptake in cultured primary human hepatocytes, and substrate activity to organic anion transporter (OAT)2 and organic anion transporting-polypeptide (OATP)1B1 in transfected cells. "SLC-phenotyping" studies in human hepatocytes suggested contribution of passive uptake, OAT2- and OATP1B-mediated transport to the overall uptake to be about 15%, 60% and 25%, respectively. PF-06835919 showed low intrinsic metabolic clearance in vitro, and was found to be metabolized via both oxidative pathways (58%) and acyl glucuronidation (42%) by CYP3A, CYP2C8, CYP2C9 and UGT2B7. Following intravenous dosing, PF-06835919 showed low clearance (0.4-1.3 mL/min/kg) and volume of distribution (0.17-0.38 L/kg) in rat, dog and monkey. Human oral pharmacokinetics are predicted within 20% error when considering transporter-enzyme interplay in a PBPK model. Finally, unbound liver-to-plasma ratio (Kpuu) measured in vitro using rat, NHP and human hepatocytes was found to be approximately 4, 25 and 10, respectively. Similarly, liver Kpuu in rat and monkey following intravenous dosing of PF-06835919 was found to be 2.5 and 15, respectively, and notably higher than the muscle and brain Kpuu, consistent with the active uptake mechanisms observed in vitro. Significance Statement This work characterizes the transport/metabolic pathways in the hepatic disposition of PF-06835919, a first-in-class KHK inhibitor for the treatment of metabolic disorders and NASH. Phenotyping studies using transfected systems, human hepatocytes and liver microsomes signifies the role of OAT2 and OATP1B1 in the hepatic uptake and multiple enzymes in the metabolism of PF-06835919. Data presented suggest hepatic transporter-enzyme interplay in determining its systemic concentrations and potential enrichment in liver, a target site for KHK inhibition.

2.
Arch Biochem Biophys ; 412(1): 42-6, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12646266

ABSTRACT

Advanced glycation end products (AGE), formed by nonenzymatic Maillard reactions between carbohydrate and protein, contribute to the increase in chemical modification and crosslinking of tissue proteins with age. Acceleration of AGE formation in collagen during hyperglycemia, with resultant effects on vascular elasticity and basement membrane permeability, is implicated in the pathogenesis of diabetic complications. AGE-breakers, such as N-phenacylthiazolium (PTB) and N-phenacyl-4,5-dimethylthiazolium (PMT) halides, have been proposed as therapeutic agents for reversing the increase in protein crosslinking in aging and diabetes. We have confirmed that these compounds, as well as the AGE-inhibitor pyridoxamine (PM), cleave the model AGE crosslink, phenylpropanedione, and have studied the effects of these compounds in reversing the increased crosslinking of skin and tail collagen isolated from diabetic rats. Crosslinking of skin collagen, measured as the half-time for solubilization of collagen by pepsin in 0.5M acetic acid, was increased approximately 5-fold in diabetic, compared to nondiabetic rats. Crosslinking of tail tendon collagen, measured as insolubility in 0.05 N acetic acid, was increased approximately 10-fold. Collagen preparations were incubated in the presence or absence of AGE-breakers or PM in phosphate buffer, pH 7.4, for 24h at 37 degrees C. These treatments did not decrease the half-time for solubilization of diabetic skin collagen by pepsin or increase the acid solubility of diabetic tail tendon collagen. We conclude that, although AGE-breakers and PM cleave model crosslinks, they do not significantly cleave AGE crosslinks formed in vivo in skin collagen of diabetic rats.


Subject(s)
Biochemistry/methods , Collagen/chemistry , Glycation End Products, Advanced/metabolism , Acetic Acid/pharmacology , Animals , Antioxidants/pharmacology , Benzoic Acid/chemistry , Chelating Agents/pharmacology , Chromatography, High Pressure Liquid , Collagen/metabolism , Cross-Linking Reagents/pharmacology , Electrophoresis, Polyacrylamide Gel , Kinetics , Maillard Reaction , Pepsin A/pharmacology , Pyridoxamine/pharmacology , Rats , Rats, Sprague-Dawley , Skin/metabolism , Solubility , Tail/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...