Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 10 27.
Article in English | MEDLINE | ID: mdl-33107822

ABSTRACT

Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.


Subject(s)
Antitoxins/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Mesorhizobium/metabolism , Antitoxins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Evolution, Molecular , Gene Library , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...