Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 212(Pt 13): 2113-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19525438

ABSTRACT

Coral reef fish live in a complex world of colour and patterns. If they are to survive they need to be able to correctly identify the things they see (e.g. predators, prey) and act accordingly (e.g. flee, feed). This paper investigates whether discrimination is limited to ecologically relevant stimuli or is in fact more adaptable. Our work focuses on the reef damselfish Pomacentrus amboinensis. Within a day or two of capture the fish demonstrated an ability to associate an arbitrary stimulus with a food reward and to discriminate the reward stimulus from a distractor matched along various physical dimensions. In our initial experiments the reward was directly associated with the target. In the final experiment, however, the reward was separated from the target in both space and time, thereby eliminating a weakness applicable to the majority of food reward experiments involving fish; namely, the presence of olfactory cues emanating from the feeding tubes. All fish were not only able to solve this task but also showed anticipatory behaviour (also referred to as goal tracking). We conclude that freshly caught reef fish not only are able to quickly learn and discriminate between novel stimuli on the basis of shape but are also able to interpret stimuli as a predictor for the availability of food at a different time and place (anticipatory behaviour).


Subject(s)
Discrimination Learning/physiology , Perciformes/physiology , Animals , Cues , Reward , Time Factors
2.
J Exp Biol ; 211(Pt 3): 354-60, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18203990

ABSTRACT

Over many millions of years, sea creatures have developed a range of light reflectance properties. One example is the large variation in the patterns and colours of fish inhabiting the world's coral reefs. Attempts to understand the significance of the colouration have been made, but all too often from the perspective of a human observer. A more ecological approach requires us to consider the visual system of those for whom the colours were intended, namely other sea life. A first step is to understand the sensitivity of reef fish themselves to colour. Physiological data has revealed wavelength-tuned photoreceptors in reef fish, and this study provides behavioural evidence for their application in colour discrimination. Using classical conditioning, freshly caught damselfish were trained to discriminate coloured patterns for a food reward. Within 3-4 days of capture the fish selected a target colour on over 75% of trials. Brightness of the distracter and target were systematically varied to confirm that the fish could discriminate stimuli on the basis of chromaticity alone. The study demonstrates that reef fish can learn to perform two-alternative discrimination tasks, and provides the first behavioural evidence that reef fish have colour vision.


Subject(s)
Anthozoa , Color Perception/physiology , Fishes/physiology , Animals , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...