Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 12(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36009089

ABSTRACT

Background/Problem. Given the treatment-resistant gait deficits after stroke and known elevated energy cost of gait after stroke, it is important to study the patterns of mechanical energies of the lower limb segments. There is a dearth of information regarding mechanical energies specifically for the thigh and shank across the gait cycle. Therefore, the purpose of the current work was to characterize the following: (1) relative patterns of oscillation kinetic energy (KE) and potential energy (PE) within lower limb segments and across lower limb segments in healthy adults during the swing phase at chosen and slow gait speeds; (2) KE and PE swing phase patterns and values for stroke survivors versus healthy adults walking at slow speed; and (3) KE and PE patterns during the swing phase for two different compensatory gait strategies after stroke,. Methods. This was a gait characterization study, a two-group, parallel-cohort study of fourteen stroke survivors with gait deficits, walking at <0.4 m/s and eight adults with no gait deficits. For testing, the eight healthy adults walked at their chosen speed, and then at the imposed slow speed of <0.04 m/s. We used a standard motion capture system and calculation methods to acquire, calculate, and characterize oscillation patterns of KE and PE of the limb segments (thigh and shank) across the gait cycle. Results. In healthy adults, we identified key energy conservation mechanisms inherent in the interactions of KE and PE, both within the thigh and shank segments and across those limb segments, partially explaining the low cost of energy of the normal adult chosen speed gait pattern, and the underlying mechanism affording the known minimal set of activated muscles during walking, especially during the early swing phase. In contrast, KE was effectively absent for both healthy adults at imposed slow walking speed and stroke survivors at their very slow chosen speed, eliminating the normal conservation of energy between KE and PE within the thigh and across the thigh and shank. Moreover, and in comparison to healthy adult slow speed, stroke survivors exhibited greater abnormalities in mechanical energies patterns, reflected in either a compensatory stepping strategy (over-flexing the hip) or circumducting strategy (stiff-legged gait, with knee extended throughout the swing phase). Conclusions and contribution to the field. Taken together, these findings support targeted training to restore normal balance control and normal activation and de-activation coordination of hip, knee, and ankle muscles, respectively (agonist/antagonist at each joint), so as to eliminate the known post-stroke abnormal co-contractions; this motor training is critical in order to release the limb to swing normally in response to mechanical energies and afford the use of conservation of KE and PE energies within the thigh and across thigh and shank.

2.
Stroke Res Treat ; 2014: 306325, 2014.
Article in English | MEDLINE | ID: mdl-25101190

ABSTRACT

Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months) were treated with an arm motor learning and spasticity therapy (5 d/wk for 12 weeks). Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI) for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P = 0.001) and greater sensory deficits (P = 0.003). Second, rehabilitation produced improvement in upper limb spasticity and motor function (P < 0.0001). Third, at baseline, greater spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho = 0.49, P = 0.03). Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r = -0.755, P = 0.003), premotor (r = -0.565, P = 0.04), primary sensory (r = -0.614, P = 0.03), and associative sensory (r = -0.597, P = 0.03) regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke.

3.
J Neurol Phys Ther ; 33(4): 203-11, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20208465

ABSTRACT

BACKGROUND/PURPOSE: A large proportion of individuals with stroke have persistent deficits for which current interventions have not restored normal motor behavior. Noninvasive brain computer interfaces (BCIs) have potential advantages for restoration of function. There are also potential advantages for combining BCI with functional electrical stimulation (FES). We tested the feasibility of combined BCI + FES for motor learning after stroke. CASE DESCRIPTION: The participant was a 43-year-old woman who was 10 months post-stroke. She was unable to produce isolated movement of any of the digits of her involved hand. With effort she exhibited simultaneous mass hyperextension of metacarpal phalangeal joints of all four fingers and thumb with simultaneous flexion of proximal interphalangeal and distal interphalangeal joints of all fingers. INTERVENTION: Brain signals from the lesioned hemisphere were used to trigger FES for movement practice. The BCI + FES intervention consisted of trials of either attempted finger movement and relax conditions or imagined finger movement and relax conditions. The training was performed three times per week for three weeks (nine sessions total). OUTCOME: : The participant exhibited highly accurate control of brain signal in the first session for attempted movement (97%), imagined movement (83%), and some difficulties with attempted relaxation (65%). By session 6, control of relaxation (deactivation of brain signal) improved to >80%. After nine sessions (three per week) of BCI + FES intervention, the participant demonstrated recovery of volitional isolated index finger extension. DISCUSSION: BCI + FES training for motor learning after stroke was feasible. A highly accurate brain signal control was achieved, and this signal could be reliably used to trigger the FES device for isolated index finger extension. With training, volitional control of isolated finger extension was attained in a small number of sessions. The source of motor recovery could be attributable to BCI, FES, combined BCI + FES, or whole arm or hand motor task practice.


Subject(s)
Brain/physiopathology , Electric Stimulation Therapy , Hand/physiopathology , Stroke Rehabilitation , User-Computer Interface , Adult , Brain Mapping , Disability Evaluation , Electroencephalography , Female , Humans , Magnetic Resonance Imaging , Mental Processes , Stroke/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...