Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585930

ABSTRACT

Linear-nonlinear (LN) cascade models provide a simple way to capture retinal ganglion cell (RGC) responses to artificial stimuli such as white noise, but their ability to model responses to natural images is limited. Recently, convolutional neural network (CNN) models have been shown to produce light response predictions that were substantially more accurate than those of a LN model. However, this modeling approach has not yet been applied to responses of macaque or human RGCs to natural images. Here, we train and test a CNN model on responses to natural images of the four numerically dominant RGC types in the macaque and human retina - ON parasol, OFF parasol, ON midget and OFF midget cells. Compared with the LN model, the CNN model provided substantially more accurate response predictions. Linear reconstructions of the visual stimulus were more accurate for CNN compared to LN model-generated responses, relative to reconstructions obtained from the recorded data. These findings demonstrate the effectiveness of a CNN model in capturing light responses of major RGC types in the macaque and human retinas in natural conditions.

2.
J Neural Eng ; 21(1)2024 02 09.
Article in English | MEDLINE | ID: mdl-38271715

ABSTRACT

Objective. Bi-directional electronic neural interfaces, capable of both electrical recording and stimulation, communicate with the nervous system to permit precise calibration of electrical inputs by capturing the evoked neural responses. However, one significant challenge is that stimulation artifacts often mask the actual neural signals. To address this issue, we introduce a novel approach that employs dynamical control systems to detect and decipher electrically evoked neural activity despite the presence of electrical artifacts.Approach. Our proposed method leverages the unique spatiotemporal patterns of neural activity and electrical artifacts to distinguish and identify individual neural spikes. We designed distinctive dynamical models for both the stimulation artifact and each neuron observed during spontaneous neural activity. We can estimate which neurons were active by analyzing the recorded voltage responses across multiple electrodes post-stimulation. This technique also allows us to exclude signals from electrodes heavily affected by stimulation artifacts, such as the stimulating electrode itself, yet still accurately differentiate between evoked spikes and electrical artifacts.Main results. We applied our method to high-density multi-electrode recordings from the primate retina in anex vivosetup, using a grid of 512 electrodes. Through repeated electrical stimulations at varying amplitudes, we were able to construct activation curves for each neuron. The curves obtained with our method closely resembled those derived from manual spike sorting. Additionally, the stimulation thresholds we estimated strongly agreed with those determined through manual analysis, demonstrating high reliability (R2=0.951for human 1 andR2=0.944for human 2).Significance. Our method can effectively separate evoked neural spikes from stimulation artifacts by exploiting the distinct spatiotemporal propagation patterns captured by a dense, large-scale multi-electrode array. This technique holds promise for future applications in real-time closed-loop stimulation systems and for managing multi-channel stimulation strategies.


Subject(s)
Artifacts , Primates , Animals , Humans , Reproducibility of Results , Electrodes , Electric Stimulation/methods , Systems Analysis
3.
bioRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37986895

ABSTRACT

Identifying neuronal cell types and their biophysical properties based on their extracellular electrical features is a major challenge for experimental neuroscience and the development of high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell (RGC) types and their visual response properties, which is fundamental for developing future electronic implants that can restore vision. The electrical image (EI) of a RGC, or the mean spatio-temporal voltage footprint of its recorded spikes on a high-density electrode array, contains substantial information about its anatomical, morphological, and functional properties. However, the analysis of these properties is complex because of the high-dimensional nature of the EI. We present a novel optimization-based algorithm to decompose electrical image into a low-dimensional, biophysically-based representation: the temporally-shifted superposition of three learned basis waveforms corresponding to spike waveforms produced in the somatic, dendritic and axonal cellular compartments. Large-scale multi-electrode recordings from the macaque retina were used to test the effectiveness of the decomposition. The decomposition accurately localized the somatic and dendritic compartments of the cell. The imputed dendritic fields of RGCs correctly predicted the location and shape of their visual receptive fields. The inferred waveform amplitudes and shapes accurately identified the four major primate RGC types (ON and OFF midget and parasol cells), a substantial advance. Together, these findings may contribute to more accurate inference of RGC types and their original light responses in the degenerated retina, with possible implications for other electrical imaging applications.

4.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37645934

ABSTRACT

Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the visual signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of macaque retinal ganglion cells (RGCs) of the major cell types, combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provided an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the jitter trajectory was inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.

5.
J Neural Eng ; 20(4)2023 08 31.
Article in English | MEDLINE | ID: mdl-37433293

ABSTRACT

Objective. Retinal implants are designed to stimulate retinal ganglion cells (RGCs) in a way that restores sight to individuals blinded by photoreceptor degeneration. Reproducing high-acuity vision with these devices will likely require inferring the natural light responses of diverse RGC types in the implanted retina, without being able to measure them directly. Here we demonstrate an inference approach that exploits intrinsic electrophysiological features of primate RGCs.Approach.First, ON-parasol and OFF-parasol RGC types were identified using their intrinsic electrical features in large-scale multi-electrode recordings from macaque retina. Then, the electrically inferred somatic location, inferred cell type, and average linear-nonlinear-Poisson model parameters of each cell type were used to infer a light response model for each cell. The accuracy of the cell type classification and of reproducing measured light responses with the model were evaluated.Main results.A cell-type classifier trained on 246 large-scale multi-electrode recordings from 148 retinas achieved 95% mean accuracy on 29 test retinas. In five retinas tested, the inferred models achieved an average correlation with measured firing rates of 0.49 for white noise visual stimuli and 0.50 for natural scenes stimuli, compared to 0.65 and 0.58 respectively for models fitted to recorded light responses (an upper bound). Linear decoding of natural images from predicted RGC activity in one retina showed a mean correlation of 0.55 between decoded and true images, compared to an upper bound of 0.81 using models fitted to light response data.Significance.These results suggest that inference of RGC light response properties from intrinsic features of their electrical activity may be a useful approach for high-fidelity sight restoration. The overall strategy of first inferring cell type from electrical features and then exploiting cell type to help infer natural cell function may also prove broadly useful to neural interfaces.


Subject(s)
Retinal Degeneration , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Action Potentials/physiology , Electric Stimulation/methods , Retina/physiology , Macaca
6.
J Neurosci ; 43(26): 4808-4820, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37268418

ABSTRACT

High-fidelity electronic implants can in principle restore the function of neural circuits by precisely activating neurons via extracellular stimulation. However, direct characterization of the individual electrical sensitivity of a large population of target neurons, to precisely control their activity, can be difficult or impossible. A potential solution is to leverage biophysical principles to infer sensitivity to electrical stimulation from features of spontaneous electrical activity, which can be recorded relatively easily. Here, this approach is developed and its potential value for vision restoration is tested quantitatively using large-scale multielectrode stimulation and recording from retinal ganglion cells (RGCs) of male and female macaque monkeys ex vivo Electrodes recording larger spikes from a given cell exhibited lower stimulation thresholds across cell types, retinas, and eccentricities, with systematic and distinct trends for somas and axons. Thresholds for somatic stimulation increased with distance from the axon initial segment. The dependence of spike probability on injected current was inversely related to threshold, and was substantially steeper for axonal than somatic compartments, which could be identified by their recorded electrical signatures. Dendritic stimulation was largely ineffective for eliciting spikes. These trends were quantitatively reproduced with biophysical simulations. Results from human RGCs were broadly similar. The inference of stimulation sensitivity from recorded electrical features was tested in a data-driven simulation of visual reconstruction, revealing that the approach could significantly improve the function of future high-fidelity retinal implants.SIGNIFICANCE STATEMENT This study demonstrates that individual in situ primate retinal ganglion cells of different types respond to artificially generated, external electrical fields in a systematic manner, in accordance with theoretical predictions, that allows for prediction of electrical stimulus sensitivity from recorded spontaneous activity. It also provides evidence that such an approach could be immensely helpful in the calibration of clinical retinal implants.


Subject(s)
Retina , Retinal Ganglion Cells , Animals , Male , Female , Humans , Retinal Ganglion Cells/physiology , Action Potentials/physiology , Retina/physiology , Primates , Electric Stimulation/methods
7.
J Neurosci ; 43(25): 4625-4641, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37188516

ABSTRACT

Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation ex vivo The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.SIGNIFICANCE STATEMENT Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.


Subject(s)
Retina , Visual Prosthesis , Animals , Retina/physiology , Retinal Ganglion Cells/physiology , Macaca , Prostheses and Implants , Electric Stimulation/methods , Photic Stimulation/methods
8.
J Neural Eng ; 19(6)2022 12 19.
Article in English | MEDLINE | ID: mdl-36533865

ABSTRACT

Objective. Vision restoration with retinal implants is limited by indiscriminate simultaneous activation of many cells and cell types, which is incompatible with reproducing the neural code of the retina. Recent work has shown that primate retinal ganglion cells (RGCs), which transmit visual information to the brain, can be directly electrically activated with single-cell, single-spike, cell-type precision - however, this possibility has never been tested in the human retina. In this study we aim to characterize, for the first time, direct in situ extracellular electrical stimulation of individual human RGCs.Approach. Extracellular electrical stimulation of individual human RGCs was conducted in three human retinas ex vivo using a custom large-scale, multi-electrode array capable of simultaneous recording and stimulation. Measured activation properties were compared directly to extensive results from macaque.Main results. Precise activation was in many cases possible without activating overlying axon bundles, at low stimulation current levels similar to those used in macaque. The major RGC types could be identified and targeted based on their distinctive electrical signatures. The measured electrical activation properties of RGCs, combined with a dynamic stimulation algorithm, was sufficient to produce an evoked visual signal that was nearly optimal given the constraints of the interface.Significance. These results suggest the possibility of high-fidelity vision restoration in humans using bi-directional epiretinal implants.


Subject(s)
Retinal Ganglion Cells , Visual Prosthesis , Animals , Humans , Retinal Ganglion Cells/physiology , Electric Stimulation/methods , Retina/physiology , Electrodes , Macaca , Action Potentials/physiology , Photic Stimulation/methods
9.
eNeuro ; 9(3)2022.
Article in English | MEDLINE | ID: mdl-35473764

ABSTRACT

A topographic map of auditory space is a feature found in the superior colliculus (SC) of many species, including CBA/CaJ mice. In this genetic background, high-frequency monaural spectral cues and interaural level differences (ILDs) are used to compute spatial receptive fields (RFs) that form a topographic map along the azimuth. Unfortunately, C57BL/6 mice, a strain widely used for transgenic manipulation, display age-related hearing loss (AHL) because of an inbred mutation in the Cadherin 23 gene (Cdh23) that affects hair cell mechanotransduction. To overcome this problem, researchers have used young C57BL/6 mice in their studies, as they have been shown to have normal hearing thresholds. However, important details of the auditory response characteristics of the SC such as spectral responses and spatial localization, have not been characterized in young C57BL/6 mice. Here, we show that two- to four-month C57BL/6 mice lack neurons with frontal auditory RFs and therefore lack a topographic representation of auditory space in the SC. Analysis of the spectrotemporal RFs (STRFs) of the SC auditory neurons shows that C57BL/6 mouse SC neurons lack the ability to detect the high-frequency (>40 kHz) spectral cues that are needed to compute frontal RFs. We also show that crossing C57BL/6 mice with CBA/CaJ mice or introducing one copy of the wild-type Cdh23 to C57BL/6 mice rescues the high-frequency hearing deficit and improves the topographic map of auditory space. Taken together, these results demonstrate the importance of high-frequency hearing in computing a topographic map of auditory space.


Subject(s)
Mechanotransduction, Cellular , Superior Colliculi , Acoustic Stimulation , Animals , Cadherins/genetics , Cadherins/metabolism , Hearing , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Superior Colliculi/physiology
10.
PLoS Comput Biol ; 17(11): e1009181, 2021 11.
Article in English | MEDLINE | ID: mdl-34723955

ABSTRACT

Sensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


Subject(s)
Models, Neurological , Superior Colliculi/physiology , Acoustic Stimulation , Animals , Auditory Perception/physiology , Brain Mapping/statistics & numerical data , Computational Biology , Electrophysiological Phenomena , Female , Male , Mice , Mice, Inbred CBA , Models, Psychological , Neurons/physiology , Nonlinear Dynamics , Photic Stimulation , Sensation/physiology , Superior Colliculi/cytology , Visual Perception/physiology
11.
Article in English | MEDLINE | ID: mdl-34784278

ABSTRACT

OBJECTIVE: Retinal prostheses must be able to activate cells in a selective way in order to restore high-fidelity vision. However, inadvertent activation of far-away retinal ganglion cells (RGCs) through electrical stimulation of axon bundles can produce irregular and poorly controlled percepts, limiting artificial vision. In this work, we aim to provide an algorithmic solution to the problem of detecting axon bundle activation with a bi-directional epiretinal prostheses. METHODS: The algorithm utilizes electrical recordings to determine the stimulation current amplitudes above which axon bundle activation occurs. Bundle activation is defined as the axonal stimulation of RGCs with unknown soma and receptive field locations, typically beyond the electrode array. The method exploits spatiotemporal characteristics of electrically-evoked spikes to overcome the challenge of detecting small axonal spikes. RESULTS: The algorithm was validated using large-scale, single-electrode and short pulse, ex vivo stimulation and recording experiments in macaque retina, by comparing algorithmically and manually identified bundle activation thresholds. For 88% of the electrodes analyzed, the threshold identified by the algorithm was within ±10% of the manually identified threshold, with a correlation coefficient of 0.95. CONCLUSION: This works presents a simple, accurate and efficient algorithm to detect axon bundle activation in epiretinal prostheses. SIGNIFICANCE: The algorithm could be used in a closed-loop manner by a future epiretinal prosthesis to reduce poorly controlled visual percepts associated with bundle activation. Activation of distant cells via axonal stimulation will likely occur in other types of retinal implants and cortical implants, and the method may therefore be broadly applicable.


Subject(s)
Visual Prosthesis , Axons , Electric Stimulation , Retina , Retinal Ganglion Cells
12.
J Neural Eng ; 18(6)2021 11 15.
Article in English | MEDLINE | ID: mdl-34710857

ABSTRACT

Objective.Epiretinal prostheses are designed to restore vision to people blinded by photoreceptor degenerative diseases by stimulating surviving retinal ganglion cells (RGCs), which carry visual signals to the brain. However, inadvertent stimulation of RGCs at their axons can result in non-focal visual percepts, limiting the quality of artificial vision. Theoretical work has suggested that axon activation can be avoided with current stimulation designed to minimize the second spatial derivative of the induced extracellular voltage along the axon. However, this approach has not been verified experimentally at the resolution of single cells.Approach.In this work, a custom multi-electrode array (512 electrodes, 10µm diameter, 60µm pitch) was used to stimulate and record RGCs in macaque retinaex vivoat single-cell, single-spike resolution. RGC activation thresholds resulting from bi-electrode stimulation, which consisted of bipolar currents simultaneously delivered through two electrodes straddling an axon, were compared to activation thresholds from traditional single-electrode stimulation.Main results.On average, across three retinal preparations, the bi-electrode stimulation strategy reduced somatic activation thresholds (∼21%) while increasing axonal activation thresholds (∼14%), thus favoring selective somatic activation. Furthermore, individual examples revealed rescued selective activation of somas that was not possible with any individual electrode.Significance.This work suggests that a bi-electrode epiretinal stimulation strategy can reduce inadvertent axonal activation at cellular resolution, for high-fidelity artificial vision.


Subject(s)
Retinal Ganglion Cells , Visual Prosthesis , Action Potentials/physiology , Axons/physiology , Electric Stimulation , Electrodes , Humans , Retina/physiology , Retinal Ganglion Cells/physiology
13.
Elife ; 92020 11 04.
Article in English | MEDLINE | ID: mdl-33146609

ABSTRACT

The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas. The optimal reconstruction filter for each RGC - its visual message - reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. ON and OFF cells conveyed largely independent, complementary representations, and parasol and midget cells conveyed distinct features. Correlated activity and nonlinearities had statistically significant but minor effects on reconstruction. Simulated reconstructions, using linear-nonlinear cascade models of RGC light responses that incorporated measured spatial properties and nonlinearities, produced similar results. Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results are relevant for natural vision.


Vision begins in the retina, the layer of tissue that lines the back of the eye. Light-sensitive cells called rods and cones absorb incoming light and convert it into electrical signals. They pass these signals to neurons called retinal ganglion cells (RGCs), which convert them into electrical signals called spikes. Spikes from RGCs then travel along the optic nerve to the brain. They are the only source of visual information that the brain receives. From this information, the brain constructs our entire visual world. The primate retina contains roughly 20 types of RGCs. Each encodes a different visual feature, such as the presence of bright spots of a certain size, or information about texture and movement. But exactly what input each RGC sends to the brain, and how the brain uses this information, is unclear. Brackbill et al. set out to answer these questions by measuring and analyzing the electrical activity in isolated retinas from macaque monkeys. Studying the macaque retina was important because the primate visual system differs from that of other species in several ways. These include the numbers and types of RGCs present in the retina. These primates are also similar to humans in their high-resolution central vision and trichromatic color vision. Using electrode arrays to monitor hundreds of RGCs at the same time, Brackbill et al. recorded the responses of macaque retinas to real-life images of landscapes, objects, animals or people. Based on these recordings, plus existing knowledge about RGC responses, Brackbill et al. then attempted to reconstruct the original images using just the electrical activity recorded. The resulting reconstructions were similar across all retinas tested. Moreover, they showed a striking resemblance to the original images. These results made it possible to comprehend how the light-response properties of each cell represent visual information that can be used by the brain. Understanding how macaque retinas work in natural conditions is critical to decoding how our own retinas process and convey information. A better knowledge of how the brain uses this input to generate images could ultimately make it possible to design artificial retinas to restore vision in patients with certain forms of blindness.


Subject(s)
Retinal Ganglion Cells/physiology , Vision, Ocular/physiology , Animals , Macaca fascicularis , Macaca mulatta , Microelectrodes , Photic Stimulation , Retina/physiology
14.
Elife ; 92020 03 09.
Article in English | MEDLINE | ID: mdl-32149600

ABSTRACT

Responses of sensory neurons are often modeled using a weighted combination of rectified linear subunits. Since these subunits often cannot be measured directly, a flexible method is needed to infer their properties from the responses of downstream neurons. We present a method for maximum likelihood estimation of subunits by soft-clustering spike-triggered stimuli, and demonstrate its effectiveness in visual neurons. For parasol retinal ganglion cells in macaque retina, estimated subunits partitioned the receptive field into compact regions, likely representing aggregated bipolar cell inputs. Joint clustering revealed shared subunits between neighboring cells, producing a parsimonious population model. Closed-loop validation, using stimuli lying in the null space of the linear receptive field, revealed stronger nonlinearities in OFF cells than ON cells. Responses to natural images, jittered to emulate fixational eye movements, were accurately predicted by the subunit model. Finally, the generality of the approach was demonstrated in macaque V1 neurons.


Subject(s)
Retinal Ganglion Cells/physiology , Visual Cortex/physiology , Action Potentials , Algorithms , Animals , Computer Simulation , Fixation, Ocular , Likelihood Functions , Macaca fascicularis , Macaca mulatta , Models, Neurological , Nonlinear Dynamics , Photic Stimulation , Visual Cortex/cytology
15.
Nat Commun ; 11(1): 1087, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32107385

ABSTRACT

Sound localization plays a critical role in animal survival. Three cues can be used to compute sound direction: interaural timing differences (ITDs), interaural level differences (ILDs) and the direction-dependent spectral filtering by the head and pinnae (spectral cues). Little is known about how spectral cues contribute to the neural encoding of auditory space. Here we report on auditory space encoding in the mouse superior colliculus (SC). We show that the mouse SC contains neurons with spatially-restricted receptive fields (RFs) that form an azimuthal topographic map. We found that frontal RFs require spectral cues and lateral RFs require ILDs. The neurons with frontal RFs have frequency tunings that match the spectral structure of the specific head and pinna filter for sound coming from the front. These results demonstrate that patterned spectral cues in combination with ILDs give rise to the topographic map of azimuthal auditory space.


Subject(s)
Auditory Pathways/physiology , Cues , Sound Localization/physiology , Superior Colliculi/physiology , Acoustic Stimulation , Animals , Auditory Pathways/cytology , Brain Mapping/methods , Ear Auricle/physiology , Electrodes, Implanted , Female , Male , Mice , Neurons/physiology , Superior Colliculi/cytology
16.
Neuron ; 103(4): 658-672.e6, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31227309

ABSTRACT

The functions of the diverse retinal ganglion cell types in primates and the parallel visual pathways they initiate remain poorly understood. Here, unusual physiological and computational properties of the ON and OFF smooth monostratified ganglion cells are explored. Large-scale multi-electrode recordings from 48 macaque retinas revealed that these cells exhibit irregular receptive field structure composed of spatially segregated hotspots, quite different from the classic center-surround model of retinal receptive fields. Surprisingly, visual stimulation of different hotspots in the same cell produced spikes with subtly different spatiotemporal voltage signatures, consistent with a dendritic contribution to hotspot structure. Targeted visual stimulation and computational inference demonstrated strong nonlinear subunit properties associated with each hotspot, supporting a model in which the hotspots apply nonlinearities at a larger spatial scale than bipolar cells. These findings reveal a previously unreported nonlinear mechanism in the output of the primate retina that contributes to signaling spatial information.


Subject(s)
Retinal Ganglion Cells/classification , Action Potentials , Animals , Cell Count , Electrophysiology/methods , Macaca fascicularis , Macaca mulatta , Models, Neurological , Nonlinear Dynamics , Patch-Clamp Techniques , Photic Stimulation , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Vision, Ocular/physiology
17.
J Neural Eng ; 16(2): 025001, 2019 04.
Article in English | MEDLINE | ID: mdl-30523958

ABSTRACT

OBJECTIVE: Epiretinal prostheses are designed to restore vision in people blinded by photoreceptor degenerative diseases, by directly activating retinal ganglion cells (RGCs) using an electrode array implanted on the retina. In present-day clinical devices, current spread from the stimulating electrode to a distant return electrode often results in the activation of many cells, potentially limiting the quality of artificial vision. In the laboratory, epiretinal activation of RGCs with cellular resolution has been demonstrated with small electrodes, but distant returns may still cause undesirable current spread. Here, the ability of local return stimulation to improve the selective activation of RGCs at cellular resolution was evaluated. APPROACH: A custom multi-electrode array (512 electrodes, 10 µm diameter, 60 µm pitch) was used to simultaneously stimulate and record from RGCs in isolated primate retina. Stimulation near the RGC soma with a single electrode and a distant return was compared to stimulation in which the return was provided by six neighboring electrodes. MAIN RESULTS: Local return stimulation enhanced the capability to activate cells near the central electrode (<30 µm) while avoiding cells farther away (>30 µm). This resulted in an improved ability to selectively activate ON and OFF cells, including cells encoding immediately adjacent regions in the visual field. SIGNIFICANCE: These results suggest that a device that restricts the electric field through local returns could optimize activation of neurons at cellular resolution, improving the quality of artificial vision.


Subject(s)
Electric Stimulation , Retina/physiology , Retinal Ganglion Cells , Visual Prosthesis , Animals , Blindness/rehabilitation , Electrodes, Implanted , Macaca mulatta , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Photic Stimulation , Photoreceptor Cells/pathology , Prosthesis Design , Retina/cytology , Visual Fields
18.
J Neurosci ; 37(35): 8428-8443, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28760858

ABSTRACT

The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity.SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors.


Subject(s)
Gait/physiology , Locomotion/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Spatial Navigation/physiology , Visual Perception/physiology , Adaptation, Physiological/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Superior Colliculi
19.
J Neurophysiol ; 118(3): 1457-1471, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28566464

ABSTRACT

Epiretinal prostheses for treating blindness activate axon bundles, causing large, arc-shaped visual percepts that limit the quality of artificial vision. Improving the function of epiretinal prostheses therefore requires understanding and avoiding axon bundle activation. This study introduces a method to detect axon bundle activation on the basis of its electrical signature and uses the method to test whether epiretinal stimulation can directly elicit spikes in individual retinal ganglion cells without activating nearby axon bundles. Combined electrical stimulation and recording from isolated primate retina were performed using a custom multielectrode system (512 electrodes, 10-µm diameter, 60-µm pitch). Axon bundle signals were identified by their bidirectional propagation, speed, and increasing amplitude as a function of stimulation current. The threshold for bundle activation varied across electrodes and retinas, and was in the same range as the threshold for activating retinal ganglion cells near their somas. In the peripheral retina, 45% of electrodes that activated individual ganglion cells (17% of all electrodes) did so without activating bundles. This permitted selective activation of 21% of recorded ganglion cells (7% of expected ganglion cells) over the array. In one recording in the central retina, 75% of electrodes that activated individual ganglion cells (16% of all electrodes) did so without activating bundles. The ability to selectively activate a subset of retinal ganglion cells without axon bundles suggests a possible novel architecture for future epiretinal prostheses.NEW & NOTEWORTHY Large-scale multielectrode recording and stimulation were used to test how selectively retinal ganglion cells can be electrically activated without activating axon bundles. A novel method was developed to identify axon activation on the basis of its unique electrical signature and was used to find that a subset of ganglion cells can be activated at single-cell, single-spike resolution without producing bundle activity in peripheral and central retina. These findings have implications for the development of advanced retinal prostheses.


Subject(s)
Axons/physiology , Neural Prostheses , Retinal Ganglion Cells/physiology , Animals , Electric Stimulation , Evoked Potentials , Female , Macaca mulatta , Male , Sensory Thresholds
20.
Curr Biol ; 26(15): 1935-1942, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27397894

ABSTRACT

Understanding the function of modulatory interneuron networks is a major challenge, because such networks typically operate over long spatial scales and involve many neurons of different types. Here, we use an indirect electrical imaging method to reveal the function of a spatially extended, recurrent retinal circuit composed of two cell types. This recurrent circuit produces peripheral response suppression of early visual signals in the primate magnocellular visual pathway. We identify a type of polyaxonal amacrine cell physiologically via its distinctive electrical signature, revealed by electrical coupling with ON parasol retinal ganglion cells recorded using a large-scale multi-electrode array. Coupling causes the amacrine cells to fire spikes that propagate radially over long distances, producing GABA-ergic inhibition of other ON parasol cells recorded near the amacrine cell axonal projections. We propose and test a model for the function of this amacrine cell type, in which the extra-classical receptive field of ON parasol cells is formed by reciprocal inhibition from other ON parasol cells in the periphery, via the electrically coupled amacrine cell network.


Subject(s)
Interneurons/physiology , Macaca fascicularis/physiology , Macaca mulatta/physiology , Retina/physiology , Visual Pathways/physiology , Amacrine Cells/physiology , Animals , Electrophysiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...